S-38.3610 Network Programming
Assignment 2: HTTP Server
Filip Nyback (79808K)

Assignment 2: HTTP Server

Overview

In this assignment a basic HTTP server is implemented. The implementation
separates the functionality into a few C files. The following table shows the main
functionality of each C file:

http-server.c |- converting a socket address to a C string
- checking command line options

- generating a local filename from the root path and request path
- assembling and sending a reply header

- sending an error reply

- serving GET and PUT requests

- general request handling and dispatching
- starting threads to serve requests

- creating the server (listening) socket

- daemonizing the server

- the main function

threads.c - initializating and shutting down the thread handling
- allocating and releasing an entry in the thread table
parse.c - reading a line of the HTTP header

- parsing a status line

- parsing a request line

- parsing a header line to a name and value pair
- parsing a HTTP request header

- freeing a parsed header

- decoding and validating a request path

pstring.c - initialization, clearing and freeing PSTRINGs (see below)
- converting PSTRINGs to C strings
string.c - extensions to the standard C library string functions
transfer.c - copying binary data from one stream to another, one buffer at a time
log.c - writing messages to the stdout, stderr and log file
discovery.c - announcing to the course specific server discovery system that the
server is starting or shutting down
connection.c |- makinga TCP connection
- getting the hostname string of the server itself
directory.c - listing a directory to a buffer

Key functions and operation logic

The main function in http-server.c goes through a number of steps to set up the
server, then calls server_loop, where the server spends most of its execution time
and finally, when the server_loop function has finished, shuts down the server.

The setup phase

During the first step of the setup phase, the server program goes through the
command line arguments, with which the server was started. These arguments,
or options, are documented in the ‘User instructions’ section. The check_options
function sets the runtime parameters (struct CONFIG) based on the options
given on the command line. The second step during the setup phase is to open

S-38.3610 Network Programming
Assignment 2: HTTP Server
Filip Nyback (79808K)

the log file. This implementation of the HTTP server uses its own private log file
(http-server-log.txt).

The third step is to daemonize the server, unless the --foreground options has
been given. The daemonization means that the server is completely detached
from the terminal, from which the server was started. In more detail, the server
forks, the parent process exits and the child continues to run, but has now a new
process id. The child creates a new session and becomes the new session leader.
The process forks again, the parent exits, the child continues and has a new
process id, but is not a session leader. The daemonization continues by
reopening stdin, stdout and stderr as /dev/null. All other file descriptors, except
for the file descriptor of the log file, are closed. The daemonization does not
change the current directory of the server, because the log file is still there and
the default directory of the file storage for the GET and PUT requests is also
inside the current directory. If the server is not daemonized (by starting it with
the --foreground option), log messages are output to the terminal and the server
can be shut down using Ctrl-C (the SIGINT signal).

The fourth step is indeed to setup signal handling. The server reacts to three
signals: SIGINT, SIGTERM and SIGPIPE. SIGINT is triggered in foreground mode
by pressing Ctrl-C in the controlling terminal. SIGTERM is triggered by the
default signal of the kill command. SIGPIPE is triggered when a connection has
been closed from the remote side. When the server has been daemonized, its
new process id is written to the log. The log can most easily be followed using the
tail command: tail -f http-server-log.txt. Another way to find out the process id of
the server is to use the ps command: ps x. When the process id of the server is
known (e.g. 12345), the server can be shutdown by using the kill command: kill
12345.

The fifth step in the initialization phase is to set up thread handling. This
implementation of the HTTP server uses Posix threads to implement concurren-
cy. A limited number of concurrent threads can execute at once. This is a
deliberate choice in order to prevent a DOS attack to allocate a very large num-
ber of threads and other resources. More details about the thread handling are
found in the ‘Thread handling’ section below.

The sixth step is to create a server (listening) socket. If the server is started with
the --ipv4 option, the server will only listen to connections over IPv4. Similarly, if
the server is started with the --ipv6 option, the server will only listen to
connections over IPv6. If none or both options are given, the server will listen to
connections over both protocols. The server does not use the getaddrinfo to get a
listening socket, but uses the more old-fashioned way of filling a sockaddr
structure. The main reason for doing it this way is that the server can listen to
any address (INADDR_ANY and in6addr_any) using only one server (listening)
socket.

The seventh and last step before the server is ready to receive connections is to
announce to the discovery service (provided by the course) that the server has

S-38.3610 Network Programming
Assignment 2: HTTP Server
Filip Nyback (79808K)

started. The server acts temporarily as a specialized HTTP client by PUTting a
file named servers-username.txt (in this case servers-fnyback.txt) to the disco-
very service (nwprogl.netlab.hut.fi:3000). The content (body) of the file is a line
with the follwing syntax: hostname:port.

The shutdown phase

The shutdown phase consists of fewer steps than the setup phase. The first step
is to announce to the discovery service that the server will shutdown. This works
in a very similar manner as in the setup phase; the difference is that the body of
the PUT request is empty.

The second step is to close the server (listening) socket. After this, threads can be
shutdown. However, if threads are running, the main thread has to wait for the
requests threads to finish, so that connections are not abruptly broken. More
details about the shutdown process of thread handling are covered in the
‘Thread handling’ section below. As a fourth and final step, the log is closed.

Thread handling

The thread handling is based on a thread table. Each entry in the table has a flag
indicating if the thread is reserved (in use), a thread id, which is assigned when
the thread is started, and arguments for the thread. The thread table is protected
from concurrent access by a mutex in order to keep the table consistent. When a
new connection has been received, a free entry is allocated from the thread table
and the thread counter is incremented. If there is not immediately a free entry in
the thread table, the main thread waits for the condition variable thread table_
not_full. Any other pending connection is kept in the queue of connections having
the length specified by the listen function. The main purpose of the thread table
is to deliver multiple arguments, such as the client socket file descriptor and
socket address, to the new thread, because the thread started with
pthread_create can only take one argument. The thread table has a fixed size,
which means that only a limited number of clients can do concurrent requests.
The main reason for this is to limit the harm of a DOS attack, so that new threads
are not created uncontrolled. When a thread finishes execution, it releases its
thread table entry, decrements the thread count and signals the condition
variable thread_table_not_full. When the last thread has been released, the
condition variable thread_table_empty is signaled. This condition variable is used
as a synchronization mechanism when the server is shutting down and waits for
all threads to finish without accepting new requests.

A mutex is also used for memory management (in safer_malloc and safer_free) in
order to prevent inconsistencies in the memory management of the standard
library, which is not guaranteed to be thread safe. Another mutex needs to be
used when writing log messages, so that different threads writing log messages
do not mix the messages up.

Handling requests

When a new connection is received by the accept function, an entry in the thread
table is allocated, the client socket file descriptor and socket address is put in the
thread entry and a new thread is created using pthread_create. The new thread

S-38.3610 Network Programming
Assignment 2: HTTP Server
Filip Nyback (79808K)

runs (through a wrapper function) the serve_request, which does the main high
level task of serving and dispatching a request. In serve_request, the IP address
and port of the client is logged, the request header is received and parsed
(parse_header), the request path is decoded (decode_request_path) and validated
(validate_request_path). After this a local filename is generated from the file
storage root path (from the CONFIG struct and indirectly from the command line
option --root <root-dir>) and the request path (from the request line). Finally the
request can be dispatched based on the requested method: GET or PUT.

The GET requests are dispatched to the serve_get function. In this function a new
header struct is reserved for the reply, the local file is opened (based on the local
filename described above), fstat-ed to get the file size and modification time and
the reply header is filled in. If the requested file is a directory, a buffer is
allocated for the directory listing, which is done in list_directory. The header is
sent, and then, if the file is a regular file (and not a directory) the content of the
local file is sent using the send_binary_data function (the same function as in
assignment 1). If the local file is a directory, the buffer with the directory listing
is sent.

The PUT requests are dispatched to the serve_put function. In this function the
validity of the Content-Length header line in the request is checked, the local file
is opened for writing, fstat-ed to check if the file is a directory. In this server
implementation it is not possible to PUT to a directory. Then the request body is
received using the receive_binary_data function (the same function as in assign-
ment 1). A reply header struct is reserved, filled in and sent.

Parsing

Parsing headers is done in a similar way as in assignment 1. A status code has
been added (as an output parameter) to distinguish different types of failure
when parsing. The parse_header function must also be able to parse request
headers; request lines are parsed in parse_request_line. Otherwise header lines
follow the same name-value pair syntax as in assignment 1. The parse_status_line
is the same as in the first assignment.

Decoding and validation of request paths

Characters in the request path (in the request line) can be encoded using the
%XY syntax, where X and Y are hexadecimal digits. In his way URLs can contain
spaces and non-ASCII characters in the request path. The request path is de-
coded in the decode_request_path function using a finite state machine (see figure
1). A transition in the figure without a label is a wildcard label matching any
other character.

S-38.3610 Network Programming
Assignment 2: HTTP Server
Filip Nyback (79808K)

Figure 1. The request path decoding finite state machine.

When a request path has been decoded, it is validated (in validate_request_path).
A request path comprises segments separated by slashes (/), e.g. the request
path /dir/file consists of the segments dir and file. A request path is not
considered valid if any segment is . (dot) or .. (dotdot). The dotdot is considered
invalid for security reasons, so that a request cannot break out of the file storage
root directory and for consistency the other special directory entry (dot) is also
considered invalid (apart for being quite useless in a request path). Paths with
subsequent slashes are considered invalid (e.g. /dir///file). A single slash is
valid; this is the file storage root directory. Directories can be requested with or
without a trailing slash (/dir is the same as /dir/).

Build and installation instructions and requirements
The HTTP server is most easily built using the provided makefile, simply by typ-
ing make.

User instructions

The HTTP server is started using the following syntax:

./http-server options

where options can be any of the following:

--foreground
The server is not daemonized and writes log messages to stdout and stderr
(in addition to the log file).

--port port-number
Sets the port number the server is listening to. The same port number is
used for both IPv4 and IPv6. The default port number is 54321.

-- root root-directory
Sets the root directory for the file storage. Files are GOT from and PUT to
this directory. The default root directory is the files directory inside the
current directory.

--ipv4

--ipv6
Listen only to connections over IPv4 or IPv6. If none or both of the --ipv4
and --ipv6 options are given, the server listens to connections over both
protocols.

--no-discovery
Do not announce the server to the discovery service when starting and
shutting down.

--threads max-threads

S-38.3610 Network Programming
Assignment 2: HTTP Server
Filip Nyback (79808K)

Sets the maximum number of concurrent threads. Default is 5.

--backlog backlog-length

Sets the length of the backlog queue of connections. Default is 10.

Testing and known limitations

Tests

The tests presented here are also performed on two other students’ implemen-
tations in answer 5 in the ’Answers to specific questions’ section and the results
are presented there. The results of my own implementation are presented here.

L.

I1.

[1I.

IV.

VL

VII.

VIIIL

Basic PUT and GET test. A local file is PUT to the server using the HTTP
client from assignment 1. After that the same file is GOT from the server.
The file sizes and contents should match before and after. This can be
ensured using Is and diff. Result: the server accepted both requests and the
sent and received file had the same size and contents. The server replied
with status 200 OK for both requests.

Replace with smaller file. A smaller file than in test I is PUT and GOT but
with the same name. The new smaller file should replace the old. File sizes
and contents are checked using Is and diff. Result: the server accepted both
requests and the sent and received file had the same size and contents. The
server replied with status 200 OK for both requests.

Get nonexistent file. Try to get a file with a filename that most likely does
not exist (this can be confirmed for my own implementation, but not for the
ones done by other students). Result: the file could not be downloaded and
the server replied with status 404 Not Found.

Gibberish in request line. An invalid request line consisting entirely of
gibberish is sent to the server using netcat. Result: the server replied imme-
diately after the request line with status 400 Bad Request.

Gibberish method name. An invalid method is requested in an otherwise
valid HTTP request line using netcat. Result: the server replied immediate-
ly after the request line with status 501 Not Implemented.

Malformed header line. An invalid header line that does not conform to
the ‘Name: value’ syntax is sent to the server. Result: the server replied
with status 400 Bad Request.

PUT without Content-Length. A PUT request without a Content-Length
header is done using netcat. Result: the server replied with status 411
Length Required.

PUT to root. A PUT request is made to upload a file to the root (the request
path is /). Result: the server replied with status 405 Method Not Allowed.

S-38.3610 Network Programming
Assignment 2: HTTP Server
Filip Nyback (79808K)

IX.

PUT and GET 2MB file. A 2 MB file is uploaded and downloaded. The file
sizes and contents are compared using Is and diff. Result: the sent and
received file had the same size and contents. The server replied with status
200 OK for both requests.

Aborted download. A 2 MB file is downloaded, but the download is abort-
ed before it is finished. If the server does not ignore the SIGPIPE signal, it
might terminate. A subsequent request is made to make sure that the
server is still responding. Result: the server logged that there was an error
when sending and freed the resources and thread used for the request. No
status could be sent to the client, because the connection was already
closed at that point. The server responded to subsequent requests.

Limitations

* Currently there is no timeout mechanism for receive and send operations.
* Directory listings are limited to one buffer size (default is 8192 bytes,

defined in config.h), because the content (the directory listing) is not on
disk, but created on request.

* Query strings (the 7’ and every thing after that in a relative path) are not

detected.

* When a file is created for the first time using PUT, the status returned is

200 OK, but a more appropriate status would be Create 201. Currently
there is no distinction between creating a file and updating it.

Answers to specific questions

1.

Multiple clients are served concurrently by a limited number of threads (5 in
the default server configuration). The main reason to keep the number of
concurrent threads limited is to limit the harm of a DOS attack, so that new
threads are not created uncontrolled. For a more detailed description of how
threads are managed and used, see section ‘Thread handling’ above. Cur-
rently, if a client keeps a connection open for an indefinite time, the server
does not close the connection. There is no timeout mechanism for receiving
or sending.

By default the server supports connection over both IPv4 and IPv6 on the
tested systems (Linux and Mac OS X). An IPv6 socket accepts both [Pv4 and
IPv6 connections if the [IPV6_V60NLY option is not set on the socket (this is
done using the --ipv6 option). This means that a single socket is used for
receiving both IPv4 and IPv6 connections. If the server is started with the
--ipv4 option, a single IPv4 socket is created instead.

To test the behavior of the server under high load, the client and server
machines were directly connected using gigabit Ethernet in order to really
test the server and not the (possibly slow) network link. The ab (Apache
Bench) tool was used on the client computer to generate requests in a
controlled way. The client computer ran Mac OS X 10.6.8 and the server
computer ran Linux 3.5.0-23 as the operating system. In each of these tests,
ab sent 20 concurrent requests and 3000 requests in total. Initially the HTTP
server ran with 5 concurrent threads and a backlog length of 10 (the default
values). This gave minimum reply times of 2-8 ms, mean reply times of 14-

S-38.3610 Network Programming
Assignment 2: HTTP Server
Filip Nyback (79808K)

48 ms and maximum reply times of 1921-2805 ms. When the thread
concurrency level was raised on the server to 10 (concurrent threads, using
the --threads 10 option), similar reply times were obtained: minimum 2-8
ms, mean 20-51 ms and maximum 929-3081 ms. When the backlog length
was raised to 20 (connections waiting) and the thread concurrency level was
kept at 10 (using the options --threads 10 --backlog 20), the following reply
times were obtained: minimum 2-9 ms, mean 11-40 ms and maximum 24-
70 ms). The conclusion that can be drawn from this experiment is that just
raising the thread concurrency from 5 to 10 did not improve the perfor-
mance much, but when the backlog length also was raised from 10 to 20, the
performance increased significantly.

This can most easily be tested by downloading a big file (I tried with a 100
MB file) and then terminating the client (e.g. wget or the HTTP client from
assignment 1) with Ctrl-C. I did have problems with this case; the server
terminated when a download was aborted. Then I found out that the SIGPIPE
signal is triggered when the connection is lost. The return value of every
receive and send (fread and fwrite) call is checked anyway, so there is no
need to use the SIGPIPE signal in the server. Hence, the SIGPIPE signal is
configured to be ignored in the init_signals function. Now when a download
is aborted, the server notices this as an error condition and frees allocated
resources and terminates the thread serving the request.

The same ten tests described in the ‘Tests’ section were performed on two
other students’ implementations. The result of my own implementation is

included for comparison.

Test jacquovl’s implementation | tvkamara’'s implementation my own implementation
I. Basic File size and contents are File size and contents are File size and contents are
PUT and GET the same. Server replied: the same. Server replied: the same. Server replied:
test. PUT: 201 Created PUT: 200 PUT: 200 OK
GET: 200 OK GET: 200 OK GET: 200 OK
No reason phrase in put
reply status line.
II. Replace File size and contents are File size and contents are File size and contents are

with smaller
file.

the same. Server replied:
PUT: 201 Created
GET: 200 OK

the same. Server replied:
PUT: 200
GET: 200 OK
No reason phrase in put
reply status line.

the same. Server replied:
PUT: 200 OK
GET: 200 OK

I11. Get non-
existent file.

Server replied:
404 Not Found
Iam header not included.

Server replied:
404 Not Found

Server replied:
404 Not Found

IV. Gibberish

Server replied:

Server closed connection, no

Server replied:

in request line. 501 Not Implemented reply. 400 Bad Request
V. Gibberish Server replied: Server closed connection, no Server replied:

method name. 501 Not Implemented reply. 501 Not Implemented

VI. Malformed Server replied: Server replied: Server replied:
header line. 200 OK 200 0K 400 Bad Request

Content delivered.

Content delivered.

Content not delivered.

VIIL. PUT with-

Server replied:

Server closed connection, no

Server replied:

out Content- 204 No Content reply. 411 Length Required
Length.
VIIL PUT Server replied: Server replied: Server replied:
to root. 403 Forbidden Failed to create the file. 405 Method Not Allowed
Not a valid HTTP status line.
IX. PUT and No reply from server. File size and contents are File size and contents are
GET 2MB file. Even with a 100 kB file, the the same. Server replied: the same. Server replied:

server gives no reply.

PUT: 200

PUT: 200 OK

S-38.3610 Network Programming
Assignment 2: HTTP Server

Filip Nyback (79808K)
GET: 200 OK GET: 200 OK
X. Aborted No reply. No reply. No reply.
download. Subsequent requests OK. Subsequent requests OK. Subsequent requests OK.
Diary

Week 7: 8 hours
Implemented a very basic server with limited parsing and validation and
serving a fixed file (not the file requested). Some code reused and updated
from the HTTP client.

Week 8: 8 hours
Improved parsing, validation and error recognition and handling.

Week 9: 10 hours
Implemented request path decoding and validation. Implemented the PUT
method.

Week 10: 24 hours
Implemented daemonization and threading. Refactorized and commented
the code. Started with the documentation.

Week 11: 24 hours
Implemented server discovery announcements and directory listings. Did
some testing and finished the documentation. [had some problems with the
SIGPIPE signal being triggered, but got it fixed (see answer 4 in the ‘Answers
to specific questions’ section).

