
Aalto University

School of Science

Degree Programme in Computer Science and Engineering

Filip Nybäck

Improving the support for ARM in the
IgProf profiler

Master’s Thesis
Espoo, October 10, 2014

Supervisor: Professor Jukka K. Nurminen
Advisor: Zhonghong Ou D.Sc. (Tech.)

Aalto University
School of Science
Degree Programme in Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Filip Nybäck

Title:
Improving the support for ARM in the IgProf profiler

Date: October 10, 2014 Pages: 79

Major: Data Communication Software Code: T-110

Supervisor: Professor Jukka K. Nurminen

Advisor: Zhonghong Ou D.Sc. (Tech.)

IgProf is an application profiler that profiles mainly performance and memory
usage. The profiler is extended and improved in three ways as part of this thesis:
support for 64-bit ARM is implemented, the execution time of stack tracing is
reduced on both 64-bit and 32-bit ARM and a simple energy profiling module is
added.

The IgProf profiler was available on the Intel x86 and x86-64 architectures, as
well as on 32-bit ARM, but support for 64-bit ARM was missing. The port of
IgProf to 64-bit ARM enables developers to evaluate how applications execute on
the new architecture with regard to performance and memory usage. The port
of IgProf is going to be used on 64-bit ARM for examination and optimisation
of the CMS software, which is related to the Compact Muon Solenoid (CMS)
experiment at CERN.

IgProf uses the libunwind library to perform stack tracing as part of the pro-
filing. An optimised version of stack tracing, previously available only on the
x86-64 architecture, is ported to both 64-bit and 32-bit ARM. The optimised
stack tracing reduces the execution time of profiling, especially when profiling
events occur frequently. When a piece of CMS software is profiled for memory
usage on 64-bit ARM and the optimised version of stack tracing is used instead
of the old version, the execution time of profiling is reduced by approximately
87 %. The overhead in execution time of profiling may not matter when a small
application is profiled, but for a big application the overhead determines if it is
practically feasible to profile the application.

A simple energy profiling module extends the functionality of IgProf. The energy
profiling module is based on sampling and obtains energy measurements from the
Running Average Power Limit (RAPL) interface present on recent Intel proces-
sors. The profiling results of a simple single-threaded application seem to show a
correlation between the execution time and the energy spent in a function. The
energy profiling module is still rather limited, but is the first step for IgProf in
the direction of energy profiling.

Keywords: performance profiling, memory profiling, AArch64, stack trac-
ing, libunwind, energy profiling

Language: English

2

Aalto-yliopisto
Perustieteiden korkeakoulu
Tietotekniikan koulutusohjelma

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Filip Nybäck

Työn nimi:
IgProf-profilointiohjelman ARM-tuen parantaminen

Päiväys: 10. lokakuuta 2014 Sivumäärä: 79

Pääaine: Tietoliikenneohjelmistot Koodi: T-110

Valvoja: Professori Jukka K. Nurminen

Ohjaaja: TkT Zhonghong Ou

IgProf on profilointiohjelma, joka profiloi pääasiassa suorituskykyä ja muistin-
käyttöä. Profilointiohjelmaa laajennetaan ja parannetaan kolmella tavalla osa-
na tätä diplomityötä: tuki 64-bittiselle ARMille toteutetaan, pinon jäljityksen
suoritusaikaa lyhennetään sekä 64-bittisellä että 32-bittisellä ARMilla ja yksin-
kertainen energianprofilointimoduuli lisätään.

IgProf toimi Intelin x86- ja x86-64-arkkitehtuureilla, kuten myös 32-bittisellä
ARMilla, mutta tuki 64-bittiselle ARMille puuttui. IgProfin sovitus 64-bittiselle
ARMille mahdollistaa sovellusten suorituskyvyn ja muistinkäytön arviointia uu-
della arkkitehtuurilla. IgProfin sovitusta on tarkoitus käyttää CERNin Compact
Muon Solenoid -kokeeseen (CMS) liittyvän CMS-ohjelmiston tarkasteluun ja op-
timointiin 64-bittisellä ARMilla.

Osana profilointia IgProf käyttää libunwind-kirjastoa pinon jäljittämiseen. Pi-
non jäljityksen optimoitu versio, joka oli saatavilla vain x86-64-arkkitehtuurilla,
sovitetaan sekä 64-bittiselle että 32-bittiselle ARMille. Optimoitu pinon jäljitys
vähentää profiloinnin suoritusaikaa, varsinkin kun profilointitapahtumat esiin-
tyvät usein. Kun CMS-ohjelmiston erään osan muistinkäyttöä profiloidaan 64-
bittisellä ARMilla ja pinon jäljityksen optimoitu versio on käytössä vanhan ver-
sion sijaan, profiloinnin suoritusaika laskee noin 87 %:lla. Profiloinnin aiheut-
tama suoritusajan pidennys ei liene merkitsevä pientä sovellusta profiloitaes-
sa, mutta laajan sovelluksen suoritusajan pidennys ratkaisee onko profilointi
käytännöllisesti toteutettavissa.

Yksinkertainen energianprofilointimoduuli laajentaa IgProfin toiminnallisuutta.
IgProfin energianprofilointimoduuli perustuu näytteenottoon ja saa energiamit-
tauksia Running Average Power Limit -rajapinnasta (RAPL), joka löytyy Intelin
uudehkoista suorittimista. Yksinkertaisen yksisäikeisen sovelluksen profilointitu-
lokset viittaavat siihen, että funktion suoritusaika ja energiankulutus korreloi-
vat. Energianprofilointimoduuli on vielä melko rajoittunut, mutta on IgProfin
ensimmäinen askel energianprofiloinnin suuntaan.

Asiasanat: suorituskyvyn profilointi, muistinkäytön profilointi, AArch64,
pinon jäljitys, libunwind, energianprofilointi

Kieli: Englanti

3

Aalto-universitetet
Högskolan för teknikvetenskaper
Examensprogram för datateknik

SAMMANDRAG AV
DIPLOMARBETET

Utfört av: Filip Nybäck

Arbetets namn:
Förbättring av stödet för ARM i profileringsprogrammet IgProf

Datum: Den 10 oktober 2014 Sidantal: 79

Huvudämne: Datakommunikationsprogram Kod: T-110

Övervakare: Professor Jukka K. Nurminen

Handledare: TkD Zhonghong Ou

IgProf är ett profileringsprogram som huvudsakligen profilerar prestanda och min-
nesanvändning. Profileringsprogrammet utökas och förbättras p̊a tre sätt som en
del av detta diplomarbete: stöd för 64-bitars ARM implementeras, exekverings-
tiden för stacksp̊arning förkortas b̊ade p̊a 64-bitars och 32-bitars ARM och en
enkel energiprofileringsmodul läggs till.

IgProf fanns tillgängligt för Intels x86- och x86-64-arkitekturer, s̊a väl som för
32-bitars ARM, men stöd för 64-bitars ARM saknades. Porteringen av IgProf till
64-bitars ARM gör det möjligt för utvecklare att utvärdera prestandan och minne-
sanvändningen för applikationer p̊a den nya arkitekturen. Det finns planer p̊a att
använda porteringen av IgProf p̊a 64-bitars ARM för granskning och optimering
av CMS-mjukvaran som är relaterad till Compact Muon Solenoid-experimentet
(CMS) vid CERN.

IgProf använder libunwind-biblioteket för att sp̊ara stacken som en del av profi-
leringen. En optimerad version av stacksp̊arningen, som fanns tillgänglig endast
för x86-64-arkitekturen, porteras till b̊ade 64-bitars och 32-bitars ARM. Den op-
timerade stacksp̊arningen förkortar exekveringstiden för profileringen, särskilt d̊a
profileringshändelser inträffar frekvent. När en del av CMS-mjukvaran profile-
ras för minnesanvändning p̊a 64-bitars ARM och den optimerade versionen av
stacksp̊arningen används istället för den gamla versionen, reduceras exekverings-
tiden för profileringen med cirka 87 %. Förlängningen av exekveringstiden som
profileringen orsakar är måhända obetydlig för små applikationer, men för stora
applikationer avgör förlängningen om profileringen är praktiskt genomförbar.

En enkel energiprofileringsmodul utökar funktionaliteten i IgProf. Energiprofile-
ringsmodulen baserar sig p̊a sampling och erh̊aller energimätningar fr̊an Running
Average Power Limit-gränssnittet (RAPL) som Intels nyare processorer imple-
menterar. Profileringsresultaten av ett enkelt enkeltr̊adigt program tyder p̊a att
exekveringstiden och energikonsumtionen i en funktion korrelerar. Energiprofile-
ringsmodulen är ganska begränsad, men är ett första steg för IgProf i riktning
mot energiprofilering.

Nyckelord: prestandaprofilering, minnesprofilering, AArch64, stacksp̊ar-
ning, libunwind, energiprofilering

Spr̊ak: Engelska

4

Acknowledgements

I would like to thank Zhonghong Ou, Jukka K. Nurminen, Giulio Eulisse,
Peter Elmer, David Abdurachmanov, Gonçalo Pestana, Kashif Nizam Khan,
Tapio Niemi and Vesa Hirvisalo for useful feedback and comments given more
or less frequently throughout the whole thesis process. I would especially like
to thank my advisor, Zhonghong Ou, for arranging weekly meetings, where
we have discussed the latest progress, problems that have arisen and possible
solutions. I would like to offer my special thanks to Giulio Eulisse for not
only sharing his excellent technical knowledge about IgProf, but also for
encouraging me when the energy profiling module seemed to be at a dead
end. I am particularly grateful for the help given by David Abdurachmanov,
who has asked the right questions about the energy profiling module, helped
me with the cycle counter on ARM and provided very valuable profiling data.
I would like to express my great appreciation to Google that has supported
me financially in the Google Summer of Code project and to Åke Wennström
for financing the hardbound copies of the thesis. I would also like to give my
special thanks to my husband for supporting and encouraging me not only
during the thesis process, but throughout my studies at Aalto University.

Espoo, October 10, 2014

Filip Nybäck

5

Abbreviations and Acronyms

ABI application binary interface
API application programming interface
CFA canonical frame address
CPU central processing unit
ELF executable and linkable format
FP frame pointer
GPU graphics processing unit
HPC high performance computing
ISA instruction set architecture
PC program counter
RAPL running average power limit
SP stack pointer
TLB translation lookaside buffer

6

Contents

Abbreviations and acronyms 6

1 Introduction 9
1.1 The IgProf profiler . 9
1.2 Problem statement . 10
1.3 Goals and scope . 11
1.4 Terminology . 11
1.5 Structure of the thesis . 12

2 Background 13
2.1 Common principles of operation 13
2.2 Common output formats . 14
2.3 A brief presentation and comparison of some profiling software 17

3 Environment 23
3.1 IgProf . 23

3.1.1 Functionality . 23
3.1.2 Counters . 25
3.1.3 Using IgProf . 26
3.1.4 Analysing and presenting profiling data 28
3.1.5 Loading IgProf . 28
3.1.6 Statistical sampling and interval timers 29
3.1.7 Function instrumentation 30
3.1.8 Stack tracing in IgProf 32

3.2 Stack tracing in libunwind . 35
3.2.1 Standard stack tracing 35
3.2.2 Fast stack tracing on x86-64 36

4 Implementation 39
4.1 The port of IgProf to AArch64 39

4.1.1 Generating jumps . 40

7

4.1.2 Identifying PC-relative instructions 41
4.1.3 Patching PC-relative instructions 43
4.1.4 Atomic increment and decrement operations 47
4.1.5 Reading the cycle counter register 48

4.2 Fast stack tracing on AArch64 and ARM 49
4.3 Energy profiling in IgProf . 51

4.3.1 The RAPL interface 51
4.3.2 Usage of the PAPI library 52
4.3.3 The energy profiling module 54

5 Testing and evaluation 56
5.1 The port of IgProf to AArch64 56
5.2 Fast stack tracing on AArch64 and ARM 60
5.3 The energy profiling module 62

6 Discussion 66
6.1 The port of IgProf to AArch64 66
6.2 Stack tracing using libunwind 67
6.3 The energy profiling module 68

7 Conclusions 70

8

Chapter 1

Introduction

1.1 The IgProf profiler

Profiling is a type of program analysis that is performed at run time, i.e. it is
dynamic as opposed to static program analysis, which is performed at compile
time. The profiling software, the profiler, collects data about the resources an
application uses. The resource of interest can be for example execution time,
memory, energy consumption or file descriptors. A performance profiler,
for example, finds out how much execution time the application spends in
different parts (e.g. functions) of the code. The main idea behind profiling
is to find the parts of the application where a resource is used the most, i.e.
possible bottlenecks. When the bottlenecks have been located, it makes sense
to make optimisations where the bottlenecks are, because resource usage is
usually not uniformly distributed over the whole application. It is sometimes
said that an application spends 80 % of the execution time in 20 % of the code
[31]. This is called the 80–20 rule and is a variant of the Pareto principle.
The actual percentages may vary from application to application [43], but it
makes sense to find the 20 % of the code that uses 80 % of the resources and
optimise those parts of the code. [44]

IgProf [27, 81] is a profiler developed within the Compact Muon Solenoid
(CMS) software division at CERN, the European Organization for Nuclear
Research [20]. The CMS software is used to analyse data and perform sim-
ulations related to CMS experiments [64]. IgProf measures and analyses
memory and performance characteristics of applications. Unlike some other
profilers, e.g. gprof, IgProf does not generally require the application to be
recompiled or relinked before profiling. The profiler operates completely in
user mode, does not require root privileges to run and can handle dynami-
cally loaded shared libraries. IgProf presents the results of the profiling as a

9

CHAPTER 1. INTRODUCTION 10

flat profile and a call graph. The main principles of operation are statistical
sampling and dynamic instrumentation of functions. These principles of op-
eration are described in general in section 2.1 and in more detail in sections
3.1.6 and 3.1.7.

1.2 Problem statement

Performance has traditionally been of higher priority than energy consump-
tion in the field of high performance computing (HPC). ARM processors are
common in mobile consumer grade equipment, where low energy consump-
tion is of high priority at the cost of performance. It has been proposed that
ARM processors could be used for scientific calculations and processing big
data [7] [60], because ARM processors generally consume less energy than
high-grade processors [17]. The cost of electricity used by a data centre is
significant, including the costs of cooling and power distribution [47]. Even
a one per cent saving in electricity costs of a big data centre is a significant
sum of money [65].

In order to be able to evaluate the performance of software running on
ARM processors, developers need profiling software supporting the ARM
architecture. IgProf already supported the 32-bit ARM architecture, but
support for the 64-bit ARM architecture was missing. It is, however, more
likely that 64-bit ARM processors will be used in data centres rather than
32-bit ARM processors [24]. Hence it makes sense to add the 64-bit ARM
architecture to the set of supported architectures in IgProf.

IgProf uses the libunwind library to perform stack tracing as part of the
profiling. The profiler performs stack tracing frequently, thus it is necessary
for the stack tracing to execute fast. Stack tracing in libunwind had already
been optimised for speed on the x86-64 architecture, but the optimised ver-
sion was not available on other architectures. A port of the optimised stack
tracing feature of the libunwind library to both ARM architectures is ex-
pected to improve the execution time of profiling on these architectures.

The IgProf profiler can perform several types of profiling, e.g. performance
profiling, memory usage profiling and file descriptor profiling. However, it
lacked the ability to profile energy consumption. The addition of an energy
profiling module to IgProf allows developers to evaluate which parts of an
application consume the most energy. This information is valuable if the
application is to be optimised for energy consumption.

CHAPTER 1. INTRODUCTION 11

1.3 Goals and scope

Three goals are set for the work related to this thesis. The first goal is to
implement support for profiling 64-bit ARM applications in the IgProf pro-
filer. The code of IgProf is mostly architecture independent, but some parts
of IgProf are implemented separately for each supported architecture. The
part of IgProf that operates on binary instructions is implemented separately
for each supported architecture, because binary instructions are encoded dif-
ferently on different architectures.

The second goal is to port the fast stack tracing feature of the libunwind
library to the 32-bit and 64-bit ARM architectures. Fast stack tracing was
only available on the x86-64 architecture. The code implementing the fast
stack tracing feature is dependent on calling conventions, register usage and
stack layout of each supported architecture.

The third goal is to implement an energy profiling module in IgProf.
In contrast with the work related to the first and second goal, the energy
profiling module extends the functionality of IgProf. The energy profiling
module is based on sampling and uses the Performance API (PAPI) library to
obtain energy measurements from the Running Average Power Limit (RAPL)
interface present on recent Intel processors.

1.4 Terminology

Four instruction set architectures (ISAs) are mainly discussed in this thesis:
x86, x86-64, A32 and A64. The name x86 originally stems from the names
of earlier Intel processors: 8086, 80186 (or 186 for short), 80286 (286), 80368
(386) and 80486 (486). The 386 processor generation introduced 32-bit reg-
isters and a 32-bit address space. In this thesis the name x86 refers only
to the 32-bit ISA. Intel calls the x86 ISA IA-32 (Intel Architecture, 32-bit)
and another common name is i386. The x86-64 ISA is backward compatible
with the x86 ISA. AMD extended the x86 ISA with 64-bit wide registers
and a 64-bit address space. AMD calls this ISA AMD64, Intel has used the
names IA-32e, EM64T and Intel 64, and the names x86-64, x86 64 and x64
are in common use. The similarly named IA-64 (Itanium) ISA by Intel, is
not related to or compatible with the x86-64 ISA. [55]

A 32-bit ARM processor implements both the A32 ISA, i.e. the original
ISA of ARM processors, and the T32 ISA, formerly called Thumb, that
was added later. All instructions in the A32 ISA are 32 bits, whereas most
instructions in the T32 ISA are 16 bits, which means that binary T32 code is
generally smaller than binary A32 code. The T32 instruction set is, however,

CHAPTER 1. INTRODUCTION 12

more limited than the A32 instruction set and does not take full advantage
of the ARM architecture. An ARM processor can switch between A32 and
T32 mode. A 64-bit ARM processor implements the A64 instruction set
architecture. Instructions are still 32 bits, but registers and the address
space are 64 bits. When running instructions of the A64 ISA, the processor
is in AArch64 mode. The processor also implements the A32 and T32 ISAs
from the 32-bit ARM design for backward compatibility. When running
instructions of the A32 or T32 ISA, the processor is in AArch32 mode. [11]

In this thesis the term ’x86 architecture’ refers to an architecture that
implements the 32-bit x86 instruction set and specifically refers to the 32-bit
mode of operation. Similarly, the term ’x86-64 architecture’ refers to an ar-
chitecture that implements the x86-64 instruction set and specifically refers
to the 64-bit mode of operation. Unless otherwise stated, the term ’ARM ar-
chitecture’ refers to an architecture implementing the A32 instruction set, i.e.
the original ARM instruction set, and specifically refers to the A32 submode
of the AArch32 mode of operation. Similarly, the term ’AArch64 archi-
tecture’ refers to an architecture implementing the A64 instruction set and
operating in the 64-bit AArch64 mode of operation. Unless otherwise stated,
the software discussed in this thesis, e.g. the IgProf profiler, the libunwind
and PAPI libraries, are assumed to run on the Linux/GNU operating system.

1.5 Structure of the thesis

The rest of the thesis is structured as follows. Chapter 2 describes profilers
in general and includes a comparison of some common profilers. Chapter 3
describes the IgProf profiler and the fast stack trace feature of the libunwind
library as they were before any porting efforts. Chapter 4 describes the
porting and implementation efforts. It describes what has been done in
order to port IgProf to 64-bit ARM, port the fast stack trace feature of
the libunwind library to 32-bit and 64-bit ARM and implement the energy
profiling module in IgProf. Chapter 5 describes testing and evaluation of the
ported software and the energy profiling module of IgProf. In chapter 6 some
results from the testing and evaluation are discussed, as well as limitations
and future work. Finally, chapter 7 concludes this thesis.

Chapter 2

Background

This chapter describes application profilers in general. Section 2.1 describes
the principles of operation common to many profilers, whereas section 2.2
describes output formats commonly used by profilers. Section 2.3 gives a
short summary of some profiling software.

2.1 Common principles of operation

There are a few common principles of operation that profilers rely on: sta-
tistical sampling, instrumentation and hardware performance counters. Sta-
tistical sampling means that the profiler samples the program state periodi-
cally, in order to collect statistics on how much execution time the program
spends in each part of the program. The profiler can present the results
using different granularity of the execution location: individual instructions,
basic blocks, functions or programs. Profilers usually implement statistical
sampling using an interval timer and a signal as described in section 3.1.6.

Instrumentation means that the code of a program is modified in some
way. The instrumentation can happen at compile time (static instrumenta-
tion) or at run time (dynamic instrumentation). The target of instrumen-
tation can range from individual instructions to functions. In the context
of profiling, instrumentation is used to insert (or inject) code that measures
performance or catches function calls. As an example, the number of clock
cycles consumed in a function can be obtained, when code that reads the
cycle counter is inserted at the beginning of the function, the function it-
self is executed and finally, the cycle counter is read again at the end of the
function. The number of cycles spent in the function is simply the difference
between the two readings.

A memory profiler, on the other hand, keeps track of memory blocks

13

CHAPTER 2. BACKGROUND 14

being allocated and released. This information can be obtained from the ar-
guments and return values of function calls to memory allocation and release
functions, e.g. malloc and free. By instrumenting memory allocation and
release functions, the profiler can keep track of the allocated memory blocks
and collect statistics on memory usage.

A third mechanism that profilers take advantage of are hardware perfor-
mance counters. Performance counters are registers in the CPU that count
hardware events such as cycle ticks, memory references, cache misses or TLB
(translation lookaside buffer) misses. Because the performance counters are
implemented in hardware, the mechanism is very fast and does not require
any modifications to the application. Performance counters can even be used
to profile system software, because the mechanism does not rely on software
being interrupted or instrumented, which can interfere with system software.

2.2 Common output formats

There are a few common types of output that profilers generate: a flat profile,
a call graph profile and an annotated source listing. A flat profile is a list of
functions and the time spent in the associated functions. The time is shown
in two ways: total time and self time. Total time includes the time spent
both in the caller and the callee(s), whereas self time only includes the time
spent in the caller, but not in the callee(s). The total time and self time
differ when the function (the caller) calls other functions (callees).

The following excerpt from the output of IgProf is an example of a flat
profile showing the cumulative time:

--

Flat profile (cumulative >= 1%)

% total Total Function

100.0 15.34 <spontaneous> [1]

100.0 15.34 _start [2]

100.0 15.34 __libc_start_main [3]

100.0 15.34 main [4]

100.0 15.34 insertion_sort [5]

42.8 6.56 swap [6]

--

The first column (% total) shows the percentage of total time the program
spent executing in the function and its child functions (callees). The second
column (total) shows the total time in seconds. Finally, the third column
shows the name of the function. Entries 1–3 are implementation details

CHAPTER 2. BACKGROUND 15

of the compiler suite (GCC) and the C library (glibc), but the functions
are responsible for calling the main function. The example above of a flat
profile from IgProf shows the cumulative time. A flat profile showing the self
time has exactly the same structure in IgProf, but the times presented are
obviously self time, i.e. the time spent in the functions themselves excluding
the time spent in child functions (callees). [39, 44]

A call graph profile can be presented as text or graphically. The text
format of a call graph profile shows a number of entries separated by a line of
dashes. The primary line of an entry is the reference point in that particular
entry. The lines above the primary line show the callers (the functions that
called the primary function) and the lines below the primary line show the
callees (the functions that the primary function called). Some profilers (e.g.
the Google performance tools [41]) can generate graphical call graph profiles
directly, whereas others (e.g. gprof) requires the use of a tool not bundled
with the profiler (e.g. Gprof2Dot [30]). [27, 39]

The following excerpts from the output generated by IgProf are examples
of call graph profile entries:

- -

Rank % total Self Self / Children Function

100.0 1.92 / 1.92 __libc_start_main [3]

[4] 100.0 1.92 0.00 / 1.92 main

55.3 1.06 / 1.06 fill_array [5]

44.1 0.85 / 0.85 insertion_sort [6]

0.6 0.01 / 0.01 munmap [12]

- -

44.1 0.85 / 1.92 main [4]

[6] 44.1 0.85 0.66 / 0.19 insertion_sort

9.7 0.19 / 0.19 swap [9]

- -

In this example only the fourth and sixth entry are shown, indicated by the
numbers in brackets in the first column (rank). Each entry has a primary line,
the line with a number in brackets on the left. The primary line shows the
primary function for that entry. In entry number four in the example, main
is the primary function. Entry number six shows that insertion sort is the
primary function. The lines above the primary line show the callers. In entry
number six, main has called the insertion sort function. The lines below the
primary line show the callees. Entry number four shows that main has called
the fill array, insertion sort and munmap functions. The call graph profile
is not an exhaustive list of callers and callees. Functions that execute fast
may not be sampled at all or even if they are included in the statistics, they
may be filtered by the analyser component of the profiler.

CHAPTER 2. BACKGROUND 16

The second column (% total) in the example output shows the percentage
of the execution time spent in the function including calls to other functions.
The interpretation of the fourth (self) and fifth column (children) depends
on the role of the line as primary function, caller or callee. On a primary line,
the fourth column (self) shows the time spent executing in the function itself
and the fifth column (children) shows the time spent executing in the callees.
The third column (also called self in IgProf) contains the total time spent in
the function, i.e. the sum of the fourth and fifth column. On a caller line,
the fourth column (self) shows the time spent in the primary function when
the caller called the primary function. The fifth column (children) indicates
the time spent in callees of the primary function when the caller called the
primary function. On a callee line, the fourth column (self) shows the time
spent in the callee itself excluding time spent in callees of the callee when
the primary function called the callee. The fifth column (children) indicates
the time spent in callees of the callee when the primary function called the
callee. Finally, the sixth column shows the name and index of the function.
[39]

An annotated source listing shows each line of source code and the number
of times the line has been executed according to the profiler. The following
excerpt from the output of the gcov tool [38], the GNU coverage testing tool,
shows the annotated source of a simple insertion sort implementation:

1: 66:void insertion_sort(int a[], int length)

-: 67:{

-: 68: int i, j;

-: 69:

100000: 70: for(i = 1; i < length; ++i) {

2499830266: 71: for(j = i; j > 0 && a[j - 1] > a[j]; --j) {

2499730267: 72: swap(a, j - 1, j);

-: 73: }

-: 74: }

1: 75:}

The first column shows the number of times a line has been executed, whereas
the second column is the line number [38]. In this example the lines 66–75
of the source file are shown. Finally, the source code is shown in the third
column. Line 66 shows that the function has been entered once. The gcov
tool does not consider lines 67–69 executable code. The outer loop, starting
at line 70, is executed 100 000 times. The inner loop, starting at line 71,
is executed 2 499 830 266 times. Line 72 shows that a swap operation was
not performed at every iteration of the inner loop. Lines 73–74 are not
executable code. Finally, line 75 shows that the function has returned once,
which matches the number of times the function was entered.

CHAPTER 2. BACKGROUND 17

2.3 A brief presentation and comparison of

some profiling software

There are many application profilers and profiling libraries available. This
brief presentation and comparison covers the IgProf, gprof, Google Perfor-
mance Tools, OProfile, HPCToolkit, Intel VTune and Instruments profilers
and tools. Profiling, performance and instrumentation libraries are included
in this comparison, because they provide functionality that profilers either
build upon or implement themselves. The Valgrind, DynamicRIO, Intel PIN
and PAPI libraries or framworks are presented and compared to the profiling
tools mentioned above. Furthermore, the perfctr, perfmon2 and perf events
performance monitoring kernel interfaces are included, because they form the
basis for many performance monitoring and profiling tools and libraries. In
the comparison especially the following criteria are taken into account when
they are known:

• if the software is open-source

• if the software requires special compilation of the application

• if the software requires root privileges to run

• if the software can handle dynamically loaded shared libraries

• supported platforms (operating systems and architectures)

• the overhead (memory, execution time)

Table 2.1 at the end of this section summarises the comparison of the profiling
tools and libraries.

IgProf is an application profiler that measures and analyses the memory
and performance characteristics of applications. It is not generally necessary
to recompile or relink the application before profiling. The profiler operates
completely in user space and does not require root privileges and can handle
dynamically loaded shared libaries. IgProf presents the results as a flat profile
and a call graph. The main mechanisms of operation are statistical sampling
and dynamic instrumentation of functions. For further details about how the
profiler is implemented, see sections 3.1.5–3.1.8. IgProf supports Linux on
the x86, x86-64 and ARM architectures. One of the goals of this thesis is to
port the profiler to the AArch64 architecture. [24, 28, 81]

The gprof profiler is part of the GNU binutils collection of development
tools [33]. The profiler requires that a profiling flag (-pg) be enabled when the

CHAPTER 2. BACKGROUND 18

application is compiled and linked. The profiler uses statistical sampling and
static function instrumentation to perform the profiling. On most platforms
the profil system call [3] performs the statistical sampling. If the system call
is not available, an interval timer is used. The profiler can produce a flat
profile, a call graph, a line-by-line profile or an annotated source. In the
line-by-line profiling mode gprof maps the sampled execution location to a
line of source code instead of mapping it to a function. The gprof profiler is
available for Linux on a wide range of architectures, including x86, x86-64,
ARM and AArch64. [39]

The Google Performance Tools (google-perftools) comprises an implemen-
tation of the memory allocation function malloc called tcmalloc, a heap
checker, a heap profiler and a CPU profiler (performance profiler). The
heap checker only detects memory leaks, whereas the heap profiler in addi-
tion to finding memory leaks collects statistics on memory allocations and
releases. The performance profiler generates a flat profile, a call graph or
annotated disassembly of the program. The call graph is available in the
Graphviz, dot, Postscript, PDF, GIF and Callgrind formats in addition to
a text report. KCachegrind can be used to visualize the files in Callgrind
format. To use the Google performance tools, it is recommended to link the
application to the libraries supplied with the tool set, but it is not strictly
necessary to do this. If the application is not linked with the supplied li-
braries, the LD PRELOAD mechanism described in section 3.1.5 is used to
load the profiler. The performance profiler makes use of statistical sampling
and the memory tools instrument memory allocation and release functions
(malloc, calloc, realloc and free). The statistical sampling is implemented
using an interval timer. The tool set supports Linux on the x86 and x86-64
architectures. [41, 42]

The OProfile profiler relies on hardware performance counters when mea-
suring the performance of an application. In case hardware performance
counters are not available on the processor, OProfile is run in legacy mode
and makes use of statistical sampling. What performance counters OProfile
can record is specific to the underlying processor architecture. OProfile ac-
cesses the counters through the perf events API of the Linux kernel. The
profiler comprises a number of command line tools, a kernel driver that col-
lects samples and a daemon that records the samples. OProfile can target a
process, a CPU or the whole system. The profiler supports only ELF bina-
ries (not a.out binaries) and Linux 2.6.13 or later on the x86, x86-64, ARM,
Alpha, MIPS, Sparc64, PowerPC, AVR32, PA-RISC and s390 architectures.
[21, 63]

Intel VTune is a commercial profiler that relies on hardware performance
counters and timers. The profiler reports the execution time spent in func-

CHAPTER 2. BACKGROUND 19

tions and code segments. The scope of profiling is generally system-wide,
but the profiler can also report timing and processor utilisation information
when profiling multithreaded applications. VTune has both a command line
and a graphical user interface and runs on Linux and Windows. [52, 58]

HPCToolkit is a collection of tools that focus on parallel programs. The
toolkit relies on statistical sampling for performance profiling and addition-
ally uses hardware performance counters to collect statistics on operation
counts, pipeline stalls and cache misses. Profiling with HPCToolkit does not
require any special compilation and adds 1–5 % overhead to the execution
time. In addition to serial programs, the toolkit can measure and analyse ap-
plications using multithreading through the pthread and OpenMP interfaces
or using Message Passing Interface (MPI). The toolkit includes programs
that visualise the results, both in time-centric and code-centric views, in a
graphical user interface. HPCToolkit supports Linux on the x86, x86-64 and
POWER architectures. [8, 82]

The Instruments tool by Apple is a performance and memory profiler.
The tool is part of the Xcode development toolset since version 3.0. Instru-
ments has a graphical user interface and presents the results in tables and
graphs. The tool relies on sampling and hardware performance counters to
collect profiling data. The iprofiler command-line tool measures performance
without running the graphical Instruments tool concurrently. The collected
profiling data is however analysed and presented in the Instruments tool. In-
struments targets the (Mac) OS X operating system on x86-64 and the iOS
operating system on Apple’s ARM-based devices. [10, 62]

Valgrind is a framework and a set of tools for debugging and profiling.
Valgrind executes the application in a virtual machine and the tools of Val-
grind (called plugins) can examine or modify each instruction of the applica-
tion. Some of the tools of Valgrind are: Memcheck, Massif, Cachegrind and
Callgrind. The Memcheck tool examines memory accesses in order to discover
memory leaks, uninitialized variables, multiple releases of allocated memory
blocks and overlapping source and destination memory blocks in calls to
memcpy and similar functions. The Massif tool is a heap profiler (memory
profiler) that keeps track of the locations in a program, where memory is
allocated. Cachegrind is a cache profiler, simulating the interaction between
the program and memory caches (L1 and L2) in order to discover how the
caches affect the performance. Callgrind generates call-graphs, counts the
number of function calls and keeps track of the number of instructions exe-
cuted in a function. The KCachegrind tool [86] visualises output from both
Cachegrind and Callgrind. The overhead of running Valgrind is 10 to 50
times the regular execution time. Valgrind supports Linux on x86, x86-64,
ARM, PPC32, PPC64, S390X and MIPS, (Mac) OS X on x86 and x86-64

CHAPTER 2. BACKGROUND 20

and Android on ARM. [69, 75]
PIN is a framework by Intel performing dynamic instrumentation of func-

tions by recompiling the binary (machine code) just in time. PIN can in-
strument specific instructions, a certain class of instructions (e.g. branches)
or whole procedures or functions. PIN is available on Linux and Windows.
The framework could be used as a building block in a profiler, but it is not
a complete profiler. [53, 54]

DynamicRIO is a framework designed for code manipulation and instru-
mentation at run-time. The framework works with basic blocks and enables
interception after each basic block. DynamicRIO provides an API for build-
ing tools that perform e.g. code modification or profiling. A number of tools
have been built on top of DynamicRIO, e.g. Dr. Memory, which is a memory
profiling tool. The framwork supports Windows and Linux on the x86 and
x86-64 architectures. [18, 19, 58]

PAPI (Performance API) is an open source performance library that
provides a platform independent interface to hardware performance coun-
ters. The interface is split into two parts: a high level interface and a low
level interface. The high level interface is easier to use and targets a lim-
ited, predefined set of events that are intended to be similar and comparable
on different platforms. The predefined sets of events include for example
counters related to memory hierarchy, cache coherence and cycle and in-
struction counts. The low level interface provides access to all native events
(implemented by the processor) as well as to user defined sets of events. This
interface is more flexible and gives more control to the programmer compared
to the high level interface. The number of events that can be monitored si-
multaneously is limited by hardware, but PAPI can multiplex access to the
performance counters at the cost of accuracy. PAPI uses the perf events in-
terface of the Linux kernel as of version 2.6.32 of Linux. If earlier versions of
Linux are used, PAPI uses the perfctr or perfmon interfaces. PAPI does not
require any special compilation of the application being profiled and supports
profiling dynamically loaded libraries. The library is available for Linux and
other UNIX-like operating systems on several architectures, such as Intel x86
and x86-64, ARM, MIPS and IBM POWER. PAPI is actively developed and
support for measuring energy consumption has recently been added [84, 85].
This feature of the PAPI library is used in the energy profiling module added
to IgProf as described in section 4.3. [50, 51]

There have been several interfaces and libraries bridging the gap between
hardware performance counters and user space tools. Because user space
tools usually cannot access all system registers or execute all instructions, one
or two layers of middleware are needed between the hardware performance
counters and tools executing in user space. Perfctr was an early interface

CHAPTER 2. BACKGROUND 21

supporting both system-wide and per-thread monitoring [40, 73].
The Perfmon2 performance monitoring interface is an alternative to the

perfctr interface. The Perfmon2 interface needs to be built into the Linux
kernel and is accessed by system calls. The libpfm library is a complementary
user space library that lets tools and applications take advantage of the
performance monitoring interface of Perfmon2. Furthermore, a command
line tool, pfmon, makes use of the libpfm library and indirectly the Perfmon2
kernel interface in order to perform system-wide or per-thread profiling. The
tool does not require any special compilation of the application to be profiled.
The Perfmon2, libpfm and pfmon software supports Linux on Intel x86, x86-
64, Itanium, IBM POWER, Sun SPARC and MIPS. [25, 59, 70]

The perf events interface, also called Linux Performance Event Subsys-
tem, is a more recent performance monitoring interface. The standardised
performance monitoring interface was added to version 2.6.31 of the main
Linux kernel. The libpfm library has been updated to take advantage of the
perf events kernel interface and works as the middleware library between the
kernel interface and user space tools. There is also a command line tool,
perf, which is a profiler using the perf events interface. Recent versions of
the perf tool supports the Running Average Power Limit (RAPL) interface
that provides energy measurements on recent Intel processors (see section
4.3 for more details). The perf events interface supports Linux on Intel x86,
x86-64, Itanium, ARM, MIPS, IBM POWER, Sun SPARC and SH among
others [83]. [23, 40]

CHAPTER 2. BACKGROUND 22

Table 2.1: A comparison of some profiling software.

General
Properties

Technical
Mechanisms

Runs on Linux
+ Architecture

S
of

tw
a
re

O
p

en
so

u
rc

e

S
p

ec
ia

l
co

m
p

il
at

io
n

R
o
ot

p
ri

v
il

eg
es

D
y
n

am
ic

al
ly

lo
a
d

ed
sy

m
b

ol
s

S
am

p
li

n
g

In
st

ru
m

en
ta

ti
o
n

P
er

fo
rm

an
ce

co
u

n
te

rs

x
86

x
86

-6
4

A
R

M

A
A

rc
h

6
4

Tools

IgProf X X X X X X X X

gprof X X X X X X X X

Google
Performance
Tools

X X X X

OProfile X X X X X X X X

Intel VTune ? ? X X X X

HPCToolkit X X X X X X

Instruments ? X X X

Libraries and frameworks

Valgrind X ? X X X X

Intel PIN ? X X X

DynamicRIO X ? ? X X X

PAPI X ? X X X X X

Interfaces

perfctr X ? X X X X ?

perfmon2 X ? X X X X X ? ?

perf events X ? X X X X X X X

Chapter 3

Environment

This chapter describes the IgProf profiler and the fast stack trace feature of
the libunwind library as they were before any porting efforts. Section 3.1.1
describes the functionality of IgProf, sections 3.1.2–3.1.4 describe how IgProf
is used and sections 3.1.5–3.1.8 describe the technical mechanisms that IgProf
relies on. Sections 3.2.1–3.2.2 describe the standard and fast stack tracing
functionality of the libunwind library.

3.1 IgProf

3.1.1 Functionality

IgProf is mainly a performance and memory usage profiler. Profiling is a
type of program analysis that is performed at run-time, i.e. it is dynamic
as opposed to static program analysis, which is performed at compile-time.
IgProf is modularly built and contains six profiling modules:

• performance profiling

• memory profiling

• empty memory profiling

• file descriptor profiling

• function instrumentation profiling

• function profiling.

Section 4.3 describes how an energy profiling module was added to the set
of available profiling modules.

23

CHAPTER 3. ENVIRONMENT 24

Performance profiling means that the time spent running the program
and in particular the time spent running each function of the program is
measured and analysed. IgProf samples the program state periodically in
order to collect statistics about how much time the application spends in
each function of the application. When it is known where in the application
most time is spent, optimisation efforts can be targeted at these locations.

Memory profiling means that dynamic memory management is tracked
during the execution of the application. Dynamic memory can be allocated
using the malloc function of the C library and released using the free func-
tion. The calloc function is similar to malloc, but fills the allocated memory
block with zeros. A memory block previously allocated using the malloc and
calloc functions can be resized using the realloc function. IgProf catches
calls to these and a few other memory management functions by instrument-
ing them (see section 3.1.7). IgProf collects statistics about how often (the
frequency) and how much (the amount) memory is allocated and released.
Active memory allocations, i.e. memory blocks that have been allocated but
not released, at the termination of the application are memory leaks.

Another type of memory profiling is also available in IgProf: empty mem-
ory profiling. There are three modes of operation available when profiling
empty memory. In the default mode of operation IgProf scans for pages
containing only zeros at release. When a memory allocation function (e.g.
malloc) requests a new page of memory from the operating system, the op-
erating system usually returns a page filled with zeros. This is different from
the calloc function that fills the memory block with zeros every time the
function is called, whereas a new page is filled with zeros only once before
the operating system makes the new page available. If the page is part of
a memory block that is first released and then allocated again using malloc,
the page is not filled with zeros again, because the page is not new anymore.
If the page contains only zeros at the time of release, it is likely that the
application has not used the page at all during the lifetime of the applica-
tion execution or the application has set the memory to zero on purpose,
e.g. using the calloc or memset functions or in initialisation functions. In
the second mode of operation a memory block is filled with a bit pattern at
allocation, but the profiler still scans for pages containing only zeros. If the
page contains only zeros at the time of release, the application has set the
memory to zero on purpose. In the third mode of operation the profiler fills a
memory block with a bit pattern at allocation and scans for pages containing
the same bit pattern at release. If a page still contains the bit pattern at the
time of release, it is likely that the application has not used the page during
the lifetime of the most recent allocation.

CHAPTER 3. ENVIRONMENT 25

IgProf can not only keep track of active memory resources, but also file
descriptors. A file descriptor is allocated when a file is opened using the
open function or indirectly using the fopen library function (calls the open
function). The file descriptor duplication functions dup and dup2 as well
as the socket functions socket and accept also allocate file descriptors. File
descriptors are released using the close function. IgProf catches calls to
these functions and keeps track of active, i.e. allocated but not released, file
descriptors during file descriptor profiling.

The function instrumentation profiler is similar to the performance pro-
filer in the sense that it measures the time the application spends in each
function. However, in this mode of operation IgProf does not use statistical
sampling to measure the time, but instead each function is instrumented at
compile-time. IgProf measures the time the function spends executing and
counts the number of times the function is called. This is the only type of
profiling in IgProf that needs recompilation of the application with a profiling
flag enabled.

The function profiler, like the function instrumentation profiler, uses func-
tion instrumentation to measure the time spent in a specific function and to
count the number of times the function is called. Unlike the function instru-
mentation profiler, the function profiler uses the dynamic instrumentation
mechanism of IgProf (see section 3.1.7) and does not require any special
compilation.

The difference between performance profiling, function instrumentation
and function profiling is the scope of the profiling. Performance profiling
targets all functions of the application and all libraries loaded for the ap-
plication. Function instrumentation targets the functions of one or more
translation units. A translation unit comprises a C/C++ source file and all
included header files. Functions in libraries that are not recompiled with
the profiling flag enabled are not instrumented. Function profiling targets a
specific function.

3.1.2 Counters

IgProf uses the notion of counters when collecting data. A counter represents
a variable in a data set, i.e. something that is being measured or counted.
The counters can be thought of as columns in a table of collected data. Each
datum in the data set has an associated stack trace, including the current lo-
cation of execution. This allows observations, or measurements, to be linked
to a specific location in an application. The performance profiling module,
having a single counter, makes explicit use of the stack trace associated with
each datum. Multiple counters can be in use during a single profiling run, e.g.

CHAPTER 3. ENVIRONMENT 26

the memory profiling module has three counters: one for the total amount
of allocated memory, one for the maximum amount of allocated memory
and one for the live memory allocations, i.e. the total amount of allocated
memory less the amount of released memory. Table 3.1 shows the counters
available in the different profiling modules of IgProf.

Table 3.1: Counters available in the different profiling modules of IgProf.

Profiling Module Counters

Performance PERF TICKS

Memory MEM TOTAL, MEM MAX, MEM LIVE

Empty memory MEM LIVE

File descriptor FD USED, FD LIVE

Function instrumentation CALL TIME, CALL COUNT

Function CALLS TOTAL

Energy NRG PKG, NRG PP0,

NRG PP1, NRG DRAM

The energy profiling module was implemented as part of this thesis. The
module and the related counters are described in section 4.3.

3.1.3 Using IgProf

Profiling using IgProf is done in two steps. In the first step, profiling data is
collected while the application to be profiled is running. In the second step,
the collected profiling data is analysed and presented. This section describes
the first step. The following section (section 3.1.4) describes the second step.

IgProf is a command line profiling tool. Unlike some other profiling tools,
e.g. gprof, IgProf does not generally require recompilation of the application
with any profiling flags enabled. The application is compiled normally and
IgProf profiles when the application is running. The command line of the
application, including any arguments to the application, is prepended with
igprof and the arguments to IgProf:

igprof arguments to igprof application arguments to the application

The arguments to the application naturally depend entirely on the appli-
cation, whereas the arguments to IgProf determines how IgProf runs. Some
arguments to IgProf do not depend on the type of profiling that is being

CHAPTER 3. ENVIRONMENT 27

performed, but are more general in nature. The -o or --output argument
and the following argument specify the output file. Unless an output file
is specified, the default name of the output file conforms to the pattern ig-
prof.pid.gz, where pid is the process id of the application running. The -z
or --compress argument will compress, or more specifically gzip, the output
file. When profiling large applications, IgProf may generate a large amount
of output and it can be a good idea to compress the output.

The -pp or --performance-profiler argument enables the performance pro-
filer. The default way of measuring the time of execution in the performance
profiler is to include both the time spent in user mode and the time spent in
kernel mode on behalf of the application. When the -pu or --user-time argu-
ment is given to IgProf, the time spent only in user space is measured. When
the -pr or --real-time argument is given, real (wall clock) time is measured.
See section 3.1.6 for implementation details.

The -mp or --memory-profiler argument enables the memory profiler in
IgProf. The -mo or --memory-overhead argument and the following specifies
how memory overhead, imposed by memory alignment restrictions and min-
imum allocation size, is taken into account. There as three alternatives for
the following argument: none, include and delta. The none alternative does
not include the overhead in memory statistics, the include alternative does
include the memory overhead and the delta alternative records the overhead
itself.

The -ep or --empty-profiler argument enables the empty memory profiler.
When a memory block is released, the empty memory profiler scans for pages
containing only zeros. When the -ei or --empty-init-memory argument is
given, memory blocks are filled with a bit pattern at allocation, but the
profiler still scans for pages containing only zeros at release. When the -eu
or --empty-track-unused argument is given, memory blocks are filled with a
bit pattern at allocation and the profiler scans for pages containing only the
bit pattern.

The -fd or --file-descriptor argument enables the file descriptor profiler.
The file descriptor profiler does not make use of any further arguments.

The -finst argument enables the function instrumentation profiler. How-
ever, the source files targeted for instrumentation need to be compiled by gcc
with the -finstrument-functions flag enabled. The compiler inserts an extra
function call at the beginning and at the end of each function. Not all source
files need to be compiled with the flag.

An argument beginning with the -fp substring enables the function pro-
filer. IgProf profiles memory allocation functions when the -fp:malloc ar-
gument is given. When a function to be profiled returns an integer or a
pointer, the argument follows the pattern -fpi:funcname, where funcname is

CHAPTER 3. ENVIRONMENT 28

the name of the function to be profiled. When a function returns a floating
point result, the argument follows the pattern -fpf:funcname. Any of the -fp
arguments can be appended by a colon and the name of a library in order to
specify the library the function is part of.

3.1.4 Analysing and presenting profiling data

When the data collection step of the profiling has finished, the result is a file
containing profiling data. The igprof-analyse program analyses and presents
the results of the profiling:

igprof-analyse -d -v -g profiling-data-file

The -d argument demangles function names describing locations of exe-
cution. When a C++ function is compiled, its name is mangled in order to
differentiate multiple functions sharing the same name but having different
numbers of arguments or arguments of different type [61]. Exactly how the
compiler mangles, or transforms, the names is specific to each compiler [34].
For example, when version 4.8.2 of the GNU C++ compiler, g++, com-
piles the functions int func(int), int func(double, char) and int func(void)
on x86-64, the compiler assigns the names Z4funci, Z4funcdc and Z4funcv
respectively to these functions. The mangled names are used when an appli-
cation is linked and in the resulting linked application. If the -d argument
is not used when running igprof-analyse, the mangled name is shown. How-
ever, the mangled names are not particularly easy or intuitive to read, so
igprof-analyse offers demangling of names.

The -v or --verbose argument enables more verbose output from the
igprof-analyse program, whereas the -g or --gdb argument makes the anal-
yser use a combination of the gdb [32], nm [35] and objdump [36] tools for
resolving addresses to function names. gdb is the GNU debugger, nm is a
tool that lists symbols from object and executable files and objdump is a tool
that provides more general information about object and executable files.

The -r or --report argument followed by the name of a counter selects
which counter to show in the output. By default the first counter is presented.
Table 3.1 shows the counters available in the different profiling modules of
IgProf.

3.1.5 Loading IgProf

The IgProf profiler is implemented as a shared (dynamically loaded) library.
The reason for this is that a shared library can be injected into the process of

CHAPTER 3. ENVIRONMENT 29

an application at load time without any need to relink or otherwise modify
the application. This mechanism is a feature of the GNU loader, ld [1],
that loads libraries referred to in the LD PRELOAD environment variable
before any other libraries are loaded. Any initialisation code in the preload
libraries is run before the actual application is run. The modules of IgProf run
their initialisation code when the shared library is loaded. This initialisation
code sets up interval timers in case of performance profiling and instruments
functions in all modes of profiling.

The preloaded and other shared libraries used by the application are part
of the same process as the application itself. This means that they share
the resources that are available to the process, e.g. memory space, memory
mapping, file descriptors, child processes, signals and signal handlers [76].
The application can access data and code in the libraries, but the libraries
can also access the data and code in the application, because the application
and the libraries are loaded into the same process.

The interface between the user and the shared library of IgProf is a shell
script called igprof. The shell script parses and validates command line ar-
guments for IgProf itself. The rest of the command line is preserved for
the application to be profiled. The shell script assigns the parameters of
igprof to environment variables that the shared library can access. Because
IgProf is loaded as a shared library, it is not possible to provide parameters
as command line arguments, but environment variables are accessible also to
shared libraries. In addition to the parameters, the script also sets the envi-
ronment variable LD PRELOAD to the path of the shared library of IgProf.
Finally the script runs the command line of the application as provided by
the user, which causes the IgProf shared library to be loaded before the ap-
plication starts executing, because the script earlier set the LD PRELOAD
environment variable.

3.1.6 Statistical sampling and interval timers

The performance profiling in IgProf is based on statistical sampling. Statis-
tical sampling means that the profiler samples the program state periodically
in order to collect statistics on how much time an application spends exe-
cuting in each part of the program. A distribution of the execution location
is obtained, when the execution location is sampled and stored periodically.
When function entries are present in the symbol table of a program, it is pos-
sible for the profiler to know which function each sampled execution location
is part of, i.e. which function was called at each sampling event.

IgProf uses an interval timer to interrupt the running program and sample
the execution state. The interval timer is started using the setitimer function

CHAPTER 3. ENVIRONMENT 30

[4] and the interval between sampling events is specified. When the timer
has expired, a signal is generated and the timer is restarted. There are three
different interval timers available as shown in table 3.2.

Table 3.2: Interval timers.

Interval timer Signal Argument to IgProf

ITIMER PROF SIGPROF -pp, --performance-profiler

ITIMER VIRTUAL SIGVTALRM -pu, --user-time

ITIMER REAL SIGALRM -pr, --real-time

ITIMER PROF is the default interval timer used in IgProf. The timer
runs both when the process executes in user mode and in kernel mode on the
behalf of the process. When the timer expires, the signal SIGPROF is sent
to the process. In order to be able to catch the signal, IgProf needs to set up
a signal handler for this signal using the sigaction function before starting
the interval timer. Alternatively, if the -pu or --user-time argument is given
to the igprof script, IgProf uses the ITIMER VIRTUAL interval timer that
runs only when the process executes in user space, but not in kernel space.
In this case, when the timer expires, the signal SIGVTALRM is sent to the
process. A third alternative is to give -pr or --real-time as an argument
to the igprof script. IgProf will then use the ITIMER REAL interval timer
that runs in real, or wall clock, time. When the timer expires, the signal
SIGALRM is sent to the process. [4]

3.1.7 Function instrumentation

The profiler needs to catch some functions calls in order to count the number
of times a function has been called, to inspect the arguments of the function
call or to detect function calls that possibly would stop IgProf from working.
In order to catch the function calls, a small block of memory, a trampoline,
is allocated. The memory block needs to be writable and executable. The
trampoline comprises four parts as shown in figure 3.1: a jump to a wrapper
function, a copy of the first few instructions of the original function, a jump
to the instruction immediately following the first few instructions that were
copied and finally, a patch area. The use of the patch area is described
in section 4.1.3. Even if the trampoline comprises mostly executable code,
the trampoline is not a complete function. It lacks a function prologue, a
function epilogue and does not return to the caller.

CHAPTER 3. ENVIRONMENT 31

first few instructions
of the original

next
.
.
.
return

original

jump to the wrapper function

first few instructions
of the original

jump to the rest of the original function

patch area

trampoline

copy

jump

Figure 3.1: The trampoline memory block.

The first few instructions of the original function to be instrumented are
overwritten with a jump instruction. The target of the jump is the beginning
of the trampoline. A data structure, called a hook, is associated with the
trampoline. The hook contains a function pointer to the location in the
trampoline where the original first few instructions are stored. This function
pointer is called the chain. IgProf uses a wrapper function in order to provide
a replacement function with the hook structure as a function argument in
addition to the original arguments. The wrapper function then calls the
replacement function.

.

.

.
original();

.

.

.

caller

jump trampoline

next
.
.
.
return

original
jump wrapper

first few instructions
of the original

jump next

patch area

trampoline

.

.

.
replacement();

.

.

.
return

wrapper

.

.

.
hook.chain();

.

.

.
return

replacement

chain
.
.
.

hook

1 2
3

4 5

6
7 89

Figure 3.2: Function call to a an instrumented function.

Figure 3.2 shows the transfer of control when an instrumented function
is called. When the caller function calls the original function, the control
is transferred to the beginning of the instrumented original function (step
1) as expected. Because the first instruction of the instrumented function
is now a jump, the execution transfers to the beginning of the trampoline
(step 2). The trampoline also starts with a jump instruction; this time the
target is the wrapper function (step 3). The wrapper function calls the
replacement function (step 4), adding the hook structure to the arguments.
The replacement function can inspect or modify the arguments, keep track
of resource usage or just count the number the function has been called. At
some point the replacement function usually calls the original function by
using the chain function pointer of the hook structure (step 5). The chain

CHAPTER 3. ENVIRONMENT 32

pointer points to the copy of the first instructions of the original function.
When these instructions have been executed, the execution will continue with
the jump (step 6) to the instructions following the replaced instructions in
the beginning of the original function. When the original function returns,
control is transferred back to the real replacement function (step 7). In
case the replacement function does not call the original function through the
chain pointer of the hook structure, steps five to seven are omitted. When
the replacement function returns, control is transferred back to the wrapper
function (step 8) as expected. However, when the wrapper function returns
(step 9), the control is transferred to the caller function, because neither step
1 nor step 2 changed the call stack.

3.1.8 Stack tracing in IgProf

It is common that functions call other functions that in turn call other func-
tions, et cetera. These nested function calls form a chain of function calls and
the list of functions in the chain of function calls is called a stack trace. If a
function f calls function g that in turn calls function h, the stack trace of the
nested function calls is the list [h, g, f], where the most recent function call
comes first. The name stack trace refers to the call stack, because at least
some data is pushed on the stack when doing nested function calls. Exactly
what data is pushed on the stack depends on the architecture and the calling
convention, but can be e.g. the return address, arguments and the values of
registers to be preserved during a function call.

When IgProf makes an observation during profiling, the current stack
trace is attached to the observation (see section 3.1.2). IgProf itself imple-
ments stack tracing on x86, whereas it relies on the stack tracing feature
of the libunwind library to perform stack tracing on the x86-64, ARM and
AArch64 architectures. This section describes the most commonly used call-
ing convention on the x86 architecture, cdecl, and how stack tracing works
with this calling convention [57]. The calling conventions on UNIX-like sys-
tems on the x86-64 [66], ARM [12] and AArch64 [14] architectures are slightly
more complex than the cdecl calling convention and are described briefly in
sections 3.2.1 and 4.2.

The call stack consists of the call frames of nested function calls. The
frame pointer points to the most current frame. On the Intel x86 architec-
ture the base pointer register, ebp, usually contains the frame pointer. The
stack pointer is called esp. The stack grows downwards on most platforms,
including x86. [57]

How exactly a call frame looks like depends on the architecture and the
calling convention used. The calling convention defines how arguments and

CHAPTER 3. ENVIRONMENT 33

return values are passed between functions. Arguments and return values
can be placed on the stack, in registers or a combination of both. The calling
convention defines in what order arguments are passed and the division of
the responsibilities between the calling function, i.e. the caller, and the called
function, i.e. the callee.

On the Intel x86 architecture, the GCC compiler uses the cdecl (C decla-
ration) calling convention for C programs [29]. The cdecl calling convention
states that arguments are passed right to left on the stack and integer return
values are stored in the eax register. The caller has the responsibility to
clean up the stack after the function call. [57]

If there is a function called func, with the prototype int func(int arg1,
int arg2, int arg3) and the function is called : func(1, 2, 3), the function
call would be translated into the following assembly (written in the AT&T
assembly syntax used by the GNU assembler):

pushl $3 ; push the third argument (the value 3)

pushl $2 ; push the second argument (the value 2)

pushl $1 ; push the first argument (the value 1)

call func ; call the function

addl $12, %esp ; restore the stack

The arguments are pushed onto the stack in reverse order, i.e. from right
to left. The call instruction first pushes the address of the next instruction
to be executed after the call, i.e. the address of the addl instruction in the
example, on the stack and then jumps to the address of the function specified
(func in the example). When the function has returned, the stack needs to
be restored. Instead of the stack being popped three times and the results
being discarded, the stack pointer is directly increased by the number of bytes
allocated for the arguments, i.e. 12 bytes (three integers four bytes each).

A function begins with a function prologue and ends with a function
epilogue. On the x86 architecture, a typical function prologue looks like this:

pushl %ebp ; push the previous base pointer (frame pointer)

; on the stack

movl %esp, %ebp ; copy the stack pointer to the base pointer

subl $20, %esp ; decrement the stack pointer by 20 for 20 bytes of

; space for automatic local variables

The previous base pointer is pushed on the stack, so that it can be re-
stored in the function epilogue. The stack pointer is copied to the base
pointer, i.e. the base pointer now contains a pointer to the call frame of the
called function. The base pointer is generally not modified in the function
between the function prologue and the function epilogue, i.e. in the body of

CHAPTER 3. ENVIRONMENT 34

the function. This means that the base pointer contains a copy of the stack
pointer before automatic local variables are allocated on the stack. Finally,
the stack pointer is decremented by the number of bytes used by the auto-
matic local variables in the function. In the example 20 bytes are allocated,
which could hold for example five integers four bytes (32 bits) each.

Figure 3.3 shows the call frame after the function prologue has been ex-
ecuted. Because the stack usually grows downwards on Intel x86, previous
call frames are located at higher addresses than the current call frame. The
arguments are pushed on the stack in reverse order. The call instruction
causes the return address of the caller to be pushed on the stack. The func-
tion prologue pushes the previous frame pointer on the stack and allocates
memory for automatic local variables on the stack.

Address Rel. address The stack

.

.

.
.
.
.

.

.

.

2000 ebp + 20 previous call frame

1996 ebp + 16 arg3

1992 ebp + 12 arg2

1988 ebp + 8 arg1

1984 ebp + 4 return address

1980 ebp + 0 previous frame pointer ← ebp (frame pointer)

1976 ebp – 4 local1

1972 ebp – 8 local2

1968 ebp – 12 local3

1964 ebp – 16 local4

1960 ebp – 20 local5 ← esp (stack pointer)

1956 ebp – 24 unused stack space

.

.

.
.
.
.

.

.

. ↓ stack grows downwards

Figure 3.3: The call frame after the function prologue has executed.

The function epilogue follows the body of the function. On the x86 ar-
chitecture, a typical function epilogue looks like this:

movl %ebp, %esp ; copy the base pointer back to the stack pointer

popl %ebp ; pop the previous base pointer (frame pointer)

; off the stack

ret ; return to the caller

The function epilogue effectively undoes what the function prologue has
done. The epilogue restores the stack pointer to the value it had before
the automatic local variables were allocated by copying the base pointer to
the stack pointer. Note that there is no need to add the number of bytes

CHAPTER 3. ENVIRONMENT 35

allocated for local variables to the stack pointer. The previous base pointer
(frame pointer) is popped off the stack and now points to the call frame of
the caller. The first two instructions of the function epilogue are usually
replaced by a single leave instruction that has the same effect and is shorter.
Finally, the ret instruction returns to the caller by first popping the return
address off the stack and then jumping to this return address.

The previous frame pointer points to the previous call frame. This is also
true for the previous call frame et cetera. The frame pointers on the stack
create a chain of call frames. When this chain is followed and the return
address of each call frame is stored, the whole chain of nested function calls,
i.e. the stack trace, is revealed.

3.2 Stack tracing in libunwind

The main purpose of the libunwind library is to provide functionality to un-
wind stack frames. A use case for stack unwinding is e.g. exception handling.
When an exception triggers, the stack needs to be unwound, one or several
frames. The libunwind library also provides the functionality to obtain the
current stack trace. IgProf uses only the stack trace feature of libunwind.

3.2.1 Standard stack tracing

The calling conventions differ slightly on x86 and x86-64. Like on the x86,
the return address is pushed on the stack when a function call is done and
popped off the stack when the function is returning. However, the first six
integer arguments of a function are treated differently. They are stored in
the registers rdi, rsi, rdx, rcx, r8 and r9. Subsequent arguments are stored
on the stack, still from right to left, like on the x86 architecture. Unlike on
x86, the calling convention on x86-64 does not require that the base pointer,
called rbp on x86-64, takes the role of a frame pointer. If the base pointer is
not used as the frame pointer, the stack pointer, called rsp on x86-64, takes
the function of the frame pointer instead. In fact the base pointer register
is allowed to be used as a general-purpose register. The compiler can keep
track of which register to use and the resulting program works correctly, but
when a stack trace is performed the same way as on x86, it may fail. [49, 66]

Some additional information is needed when the stack is traced on x86-
64 [49]. This information may be found in the executable in the form of
unwind information [87]. The unwind information is stored in a .eh frame
[77] or .debug frame [37, 71] section in the executable. The information is
necessary for programs coded in languages that implement exceptions, e.g.

CHAPTER 3. ENVIRONMENT 36

C++, but it is also useful for debugging purposes, e.g. when gdb (the GNU
debugger) performs a backtrace (stack trace). The unwind information keeps
track of whether registers change during the execution of a function and in
case they do change, how the previous value of the register is saved. Usually
the previous value of a register that is reused or might be overwritten by a
function call is saved on the stack at some offset from a reference register,
i.e. either the stack pointer or the frame pointer. The unwind information
specifies the offset and the reference register.

The libunwind library has the functionality to parse and use the unwind
information found in executables [68]. The library also implements stack
tracing that uses the unwind information. The standard (and slow) way of
obtaining a stack trace in libunwind is to first save the state of the registers
(the context) to a data structure called the cursor and then unwind the stack
one frame at a time as many times as possible.

Each frame has an associated value of the program counter and the canon-
ical frame address (CFA). The values of the program counter of each frame
make up the stack trace. The CFA is defined as the value of the stack pointer
when the caller calls the callee [37]. The stack pointer may change before
execution reaches the start of the called function, e.g. on the x86-64 archi-
tecture the return address is pushed on the stack, which modifies the value
of the stack pointer. In this case, the CFA and the value of the stack pointer
are not the same when the function prologue is entered. [71]

3.2.2 Fast stack tracing on x86-64

Each time the stack is being traced, the context is first saved and then the
stack is unwound one frame at a time based on the unwind information.
When an application is profiled for performance or memory usage using Ig-
Prof, the stack is traced many times a second. When the stack is being
traced, it is not unlikely that some location of execution, i.e. the value of the
program counter associated with a frame, has already been encountered dur-
ing previous stack unwinding. If an application spends 80 % of the execution
time in 20 % of the code [31], i.e. it follows the 80–20 rule or a variant of the
Pareto principle, there might be opportunities for optimisations.

One such optimisation is to cache the data needed to calculate the previ-
ous frame based on the current frame. The first time a location of execution
is encountered, the standard unwind step is performed and the information
necessary to calculate the previous location of execution and the previous
frame address is cached. The cache of the frame descriptors is implemented
as a hash table with the location of execution as the key. When the same
location of execution is encountered again, the cache already has the infor-

CHAPTER 3. ENVIRONMENT 37

mation necessary to find the previous frame and there is no need to parse
and interpret the unwind information.

A frame descriptor contains the following fields:

• frame type: standard, signal, guessed or unknown

• which register is the reference register (the stack pointer or the base
register)

• the offset to add to the reference register to calculate the CFA

• the offset to add to the CFA to calculate the address of the previous
base pointer

• the offset to add to the CFA to calculate the address of the previous
stack pointer

The most common frame type is the standard frame. When a frame
descriptor has been obtained, either from the cache or as the result of an
unwind step, the following steps are carried out to calculate the previous
frame based on the current frame and the frame descriptor:

1. the previous CFA is the value of the current reference register, i.e. the
stack pointer or the base pointer, ± an offset

2. the previous location of execution is obtained from the stack at the
address CFA – 8

3. the previous base pointer is either the current unmodified base pointer
or the CFA ± an offset

4. the previous stack pointer is the CFA itself.

A signal frame is pushed on the stack when a signal occurs and the op-
erating system saves the context, i.e. a snapshot of the whole register file,
and some signal related information on the stack before the signal handler
executes. For this frame type the fast stack tracing stores only the size of
the signal frame in the frame descriptor. The previous CFA is calculated
as the current CFA + the size of the signal frame. The previous location
of execution, the previous stack pointer and the previous base pointer are
obtained directly from the context structure on the stack.

The guessed frame type is similar to the standard frame type, except that
memory accesses are validated more strictly. If a frame is not recognised as
standard, stack or guessed frame type, frames are unwound the standard
(and slower) way, using the unwind information.

CHAPTER 3. ENVIRONMENT 38

Another opportunity for optimisation is the very first step of stack trac-
ing, saving the context. In practice stack unwinding is only dependent on a
few registers for the purpose of building the stack trace. The GNU C library
implementation of the getcontext function saves 20 registers, 14 general pur-
pose registers and the regular and SSE (SIMD) floating point state registers
in the x86-64 implementation. In addition to this, the signal mask is obtained
through a system call, which is costly because of the context switch between
user and kernel mode. The libunwind library implementation of getcontext
excludes the system call. Furthermore, there is an implementation of getcon-
text optimised for the fast stack feature. It saves only the rbx, rbp, rsp and
rip registers, i.e. four out of 20 registers, and excludes the system call.

Chapter 4

Implementation

This chapter describes the port of IgProf to the AArch64 architecture (sec-
tion 4.1) and the port of the fast stack trace feature in the libunwind library
to both the AArch64 and the ARM architectures (section 4.2). More speci-
ficically, this chapter describes what has been ported and how it has been
ported. Furthermore, section 4.3 describes how an energy profiling module
was implemented in IgProf.

4.1 The port of IgProf to AArch64

The code of IgProf is mostly architecture independent, which means that
most of the code works on any architecture without modifications. There are,
however, some parts of the code that are implemented separately for each
supported architecture. The separate implementations are due to differences
in instruction encoding, the lack of atomicity in C/C++ and differences in
how system registers are accessed. The main tasks that are architecture
dependent in IgProf are:

• generating jumps

• identifying PC-relative instructions

• patching PC-relative instructions

• atomic increment and decrement operations

• reading the cycle counter register.

Sections 4.1.1–4.1.5 describe the details of porting these five tasks to the
AArch64 architecture.

39

CHAPTER 4. IMPLEMENTATION 40

4.1.1 Generating jumps

When functions are instrumented (section 3.1.7), jumps to and from the
trampoline are generated (see figure 3.1). Three alternatives are presented
in this section for generating jumps.

The first alternative comprises a single relative jump instruction, b:

b relative_address ; jump to the relative address

The relative address is the difference between the destination and source
addresses. The advantages of this solution are that the generated instruction
sequence is short, only one instruction, and it does not overwrite any register.
The disadvantage is that the jump can reach only ±128 MB from the location
of the b instruction.

The second alternative is a sequence of three instructions:

adrp x16, abs_addr ; load bits 12..63 of address

add x16, x16, #low_address_bits ; load bits 0..11 of address

br x16 ; jump to the address in register x16

The adrp instruction loads the higher 52 bits of the absolute target address,
based on the relative address of the target, into the x16 register. The calling
convention for AArch64 allows the use of registers x16 and x17 as scratch
registers between a function call and the execution of the called function
[14]. The add instruction loads the lower 12 bits of the absolute address. The
address is loaded in two steps, because every instruction is 32 bits on AArch64
and some of the bits are used to encode the instruction itself. Finally, the br
instruction jumps to the address in register x16. This alternative can jump
at most ±4 GB from the location of the adrp instruction. The weaknesses of
this solution is that the x16 register is overwritten and the jump sequence is
three instructions long, while the range of the jump does not cover the whole
address space.

The third alternative is similar to the second alternative in the sense that
first the absolute address is loaded into the x16 register and then the jump
is carried out:

ldr x16, addr_ptr ; load the address at the address pointer

; into register x16

br x16 ; jump to the address in register x16

addr_ptr:

.dword abs_addr ; the absolute address itself

Instead of loading the absolute address in two instructions, the ldr instruction
loads the address in one instruction. The address encoded as part of the

CHAPTER 4. IMPLEMENTATION 41

ldr instruction, i.e. addr ptr, is merely a pointer to the full 64-bit address,
because every instruction is 32 bits and some of the bits are used to encode
the instruction itself. Like in the second alternative, the br instruction jumps
to the address in the register. Finally the absolute address (the literal) is
appended to the jump sequence. The 64-bit absolute address (the .dword
pseudoinstruction) corresponds to two instructions in terms of space needed.
This solution has the advantage that the jump target can be at any address
in the 64-bit address space. The disadvantages are that the x16 register is
overwritten and the jump sequence is four instructions long.

The first alternative, the one-instruction jump, is used at the beginning
of an instrumented function, in order to transfer control to the beginning of
the trampoline (step 1 in figure 3.2). Because the b instruction can jump at
most ±128 MB, the trampoline needs to be allocated within ±128 MB from
the start of the instrumented function. When the trampoline is allocated,
the file /proc/self/maps, containing a memory map of the current process, is
examined to find a memory area close enough to the instrumented function.
The same mechanism is used on the x86-64 architecture to find memory areas
for trampolines. A benefit of using the one-instruction jump is that only one
instruction needs to be relocated to the trampoline. The jump back from the
trampoline to the instrumented function (step 6 in figure 3.2) is also a one-
instruction jump, because the distance between the start of the instrumented
function and the trampoline is the same, even if the direction is the opposite.

The third alternative, equivalent to four instructions in length, is used to
transfer control from the trampoline to the wrapper function (step 3 in figure
3.2). This solution allows the wrapper function to be located anywhere in
the address space. At this point in execution no instruction of the original
uninstrumented function has been executed and the x16 register can be used
safely to load the address of the jump target.

4.1.2 Identifying PC-relative instructions

When the first few instructions are copied from the beginning of the original
function to the second section of the trampoline as part of the dynamic
instrumentation, most of the instructions will execute equally well at their
new location in the trampoline. There are, however, eleven instructions that
are sensitive to their location in memory at execution. These instructions use
addressing relative to the program counter, i.e. the address of the instruction
being executed. The eleven instructions can be divided into three groups:

• the load instructions ldr and ldrsw

• the address calculation instructions adr and adrp

CHAPTER 4. IMPLEMENTATION 42

• the relative jump instructions b, bl, b.cond, cbz, cbnz, tbz and tbnz.

These eleven instructions need to be modified, or patched, in order to work
correctly. Before the PC-relative instructions are patched, they need to be
identified. The tasks of identifying and patching instructions could be com-
bined into a single task, but the structure of IgProf suggests that these tasks
are performed in two steps.

Figure 4.1 shows the encoding of the instructions using PC-relative ad-
dressing. All instructions are represented as 32-bit words on the AArch64
architecture. The fields consisting of zeros and ones determine which instruc-
tion is to be executed, e.g. adr or cbz, and determines the layout of the other
fields of the instruction word. Identifying a specific instruction is a matter
of matching a bit pattern of the instruction word being examined and the
bit pattern of the instruction prototype. Only the bits positions containing
zeros and ones in figure 4.1 are considered; the other bit positions belong to
fields having variable content.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

opc 0 1 1 V 0 0 offset reg ldr(sw)

1 0 0 1 1 0 0 0 offset reg ldrsw

0 ol 1 0 0 0 0 oh reg adr

1 ol 1 0 0 0 0 oh reg adrp

0 0 0 1 0 1 offset b

1 0 0 1 0 1 offset bl

0 0 0 1 0 1 0 0 offset 0 cond b.cond

sf 0 1 1 0 1 0 0 offset reg cbz

sf 0 1 1 0 1 0 1 offset reg cbnz

bh 0 1 1 0 1 1 0 bl offset reg tbz

bh 0 1 1 0 1 1 1 bl offset reg tbnz

Figure 4.1: Encoding of the instructions using PC-relative addressing.

Figure 4.2 shows an example of how instructions are identified in prac-
tice. Instructions are identified by first calculating the bitwise AND of the
instruction word and a mask. The mask contains ones in the bit positions
having fixed bit values, i.e. the field(s) that encode the instruction itself, and
zeros in the bit positions having variable bit values. The result of the bitwise
AND is then compared to an instruction prototype and if they are equal,
the instruction is correctly identified. In other words, if the expression (in-
struction AND mask) == prototype is true, the instruction being examined
matches the prototype. The instruction prototype contains zeros in the bit

CHAPTER 4. IMPLEMENTATION 43

positions having variable bit values and the unmodified bit values in the bit
positions having fixed bit values. The mask and the instruction prototype
are specific to the instruction to be tested for a match. Figure 4.2 shows
how the mask and the prototype are formed based on the encoding of the
adr instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 ol 1 0 0 0 0 oh reg adr

1 0 0 1 1 1 1 1 0 mask

0 0 0 1 0 prototype

Figure 4.2: Identification of the adr instruction.

4.1.3 Patching PC-relative instructions

The instructions that use relative addressing need to be patched in order
to work correctly. Depending on the functionality of the instruction, there
are different solutions to achieve the same effect as if the instruction were
executed in the original location. It is not necessary to execute the exact
same instruction; it can be replaced by another instruction or a sequence
of instructions that carries out the same task as the original instruction.
Ideally the solution should be short and not modify registers that the original
instruction does not modify.

The first group of instructions using relative addressing comprises the
load instructions ldr and ldrsw. The ldr (load register) instruction loads a
value into a register. There are a few variants of the ldr instruction, but
only one variant loads a (constant) literal relative to the program counter.
This variant of the ldr instruction loads a word at an address relative to
the program counter into a register. Figure 4.1 shows the encoding of the
ldr instruction. The offset field contains a PC-relative address that is first
scaled (multiplied) by four and then sign extended. The effective address
is obtained by adding the scaled and sign extended offset to the value of
the program counter. The relative address has a range of ±1 MB and a
granularity of 4 bytes.

Table 4.1 shows how the V and opc fields determine the bit width of
the literal and the type and width of the destination register. The AArch64
architecture has two sets of integer registers, w and x, and three sets of
SIMD (single instruction, multiple data) and floating point registers, s, d
and q. The w and s registers are 32-bit wide, the x and d registers are 64-bit
wide and the q registers are 128-bit wide. The reg field of the ldr instruction

CHAPTER 4. IMPLEMENTATION 44

further specifies the number (0–31) of the register inside the register set, e.g.
if V = 0, opc = 00 and reg = 2, the destination register is w2.

Table 4.1: Characteristics of the literal and the destination register addressed
by the ldr and ldrsw instructions.

V opc
width of
literal

width of
register

register
set instruction

0 00 32 32 w ldr wreg, offset

0 01 64 64 x ldr xreg, offset

0 10 32 64 x ldrsw xreg, offset

1 00 32 32 s ldr sreg, offset

1 01 64 64 d ldr dreg, offset

1 10 128 128 q ldr qreg, offset

The ldrsw (load register signed word) instruction is very similar to the
ldr instruction, but has an addition step. The 32-bit literal is sign extended
to 64 bits to match the bit width of the destination register.

When an ldr or ldrsw instruction is copied from the beginning of the
original function to the trampoline, the relative address of the instruction
does not point to the location where the literal is stored anymore. One
solution is to recalculate the relative address of the literal, but this is possible
only when the literal and the trampoline are close enough, i.e. at most 1 MB
apart. A more general solution is to copy the literal itself to the patch area of
the trampoline and change the relative address in the ldr or ldrsw instruction
to the relative address of the literal in the patch area. There is no need to
change the reg field of the ldr or ldrsw instruction.

The second group of instructions using relative addressing comprises the
address calculation instructions adr and adrp. The adr and adrp instructions
calculate the effective (absolute) address of an address relative to the program
counter and store the effective address in a register. Figure 4.3 shows the
encoding of the adr instruction and the calculation of the effective address.
The offset is encoded as a PC-relative address with a range of ±1 MB and a
granularity of one byte. The offset is split into two parts: the two lowest bits
are stored in the ol (offset low) field and the higher bits are stored in the oh
(offset high) field. The offset is first sign extended to 64 bits and then added
to the value of the program counter to form the effective address. Finally
the effective address is loaded into the x register specified by the reg field of
the instruction, e.g. x2 if reg = 2.

CHAPTER 4. IMPLEMENTATION 45

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 ol 1 0 0 0 0 oh reg

sign extension oh ol

program counter+

effective address=

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Figure 4.3: The encoding of the adr instruction and the calculation of the
effective address.

The adrp instruction works similarly to the adr instruction, but instead
of calculating the address of an individual byte, adrp calculates the address
of a 4096-byte page. Figure 4.4 shows the encoding of the adrp instruction
and the calculation of the effective address. The offset is split into two fields,
like for the adr instruction, but is scaled (multiplied) by 4096. This gives a
range of ±4 GB for the relative address. The lowest twelve bits of the value
of the program counter used for the address calculation are cleared to zero
in order for the calculation to result in an effective address that aligns to
4096-byte pages. The reg field specifies which x register is the destination
register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 ol 1 0 0 0 0 oh reg

sign extension oh ol 0

high 52 bits of program counter 0+

effective address=

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Figure 4.4: The encoding of the adrp instruction and the calculation of the
effective address.

Because the adr and adrp instructions use relative addressing, the calcu-
lation of the effective address will yield an incorrect result if the instruction
is copied to a different location. As with the ldr and ldrsw instructions, the
relative address could be corrected if the trampoline were close enough to the
intended target of the address calculation. A more general approach is to
precalculate the effective address and store it as a 64-bit literal in the patch
area of the trampoline. The adr or adrp instruction in the second section
of the trampoline is replaced by an ldr instruction that loads the literal into
the same destination register as the adr or adrp instruction specified.

The third group of instructions using relative addressing comprises rel-
ative jump instructions. The jump instructions can further be divided into

CHAPTER 4. IMPLEMENTATION 46

conditional and unconditional jump instructions. The b and bl instructions
are unconditional jump instructions, whereas the b.cond, cbz, cbnz, tbz and
tbnz instructions are conditional. All the relative jump instructions have an
offset field, ranging from 14 to 26 bits in width, that is first scaled by four
and then sign extended to form the relative address, like the ldr and ldrsw
instructions. Because all instructions on AArch64 are 32 bits (four bytes)
wide and are aligned to four bytes, it is not necessary to include the two
lowest bits, that are always zero, in the encoding of the instructions.

The b (branch) instruction simply jumps to a relative address. The bl
(branch with link) instruction first loads the return address into the link
register (x30) and then jumps to the relative address. The return address
is the address of the following instruction, i.e. PC + 4, and is used as the
location to jump to when a function returns. Figure 4.1 shows the encoding
of the b and bl instructions. The relative address, specified in the offset field,
has a range of ±128 MB.

The b.cond (branch conditionally) instruction jumps to a relative address
only when the specified condition holds. Figure 4.1 shows the enconding of
the b.cond instruction. The relative address, specified by the offset field, has
a range of ±1 MB. The cond field specifies the condition on which the jump
is carried out. The condition depends on one or two of four condition bits in
a status register. Typically the b.cond instruction is preceded by a compare
instruction that sets the value of the condition bits in the status register.

The cbz (compare and branch if zero) and cbnz (compare and branch if
not zero) instructions jump conditionally when the value a register is zero
or not zero respectively. Figure 4.1 shows the encoding of the cbz and cbnz
instructions. The sf field determines the register set: when sf = 0, a w
register is compared to zero and when sf = 1, an x register is compared to
zero. The reg fields specifies the number of the register inside the register
set, e.g. if sf = 1 and reg = 3, the register to compare is x3. The relative
address, specified in the offset field, has a range of ±1 MB.

The tbz (test bit and branch if zero) and tbnz (test bit and branch if
not zero) instructions jump conditionally when a specified bit in a register is
zero or not zero respectively. Figure 4.1 shows the encoding of the tbz and
tbnz instructions. The fields bh and bl, when concatenated, form a six-bit
bit position. If the bit at the specified bit position in the register is zero,
in case of tbz, or one, in case of tbnz, the jump is carried out. The reg field
specifies which x register is examined. The relative address, specified by the
offset field, has a range of ±32 kB.

All the relative jump instructions use relative addressing, which means
that when the instructions are copied to a different location, the jump target
is incorrect. One solution is to calculate a new relative address and update

CHAPTER 4. IMPLEMENTATION 47

the offset field, but it only works when the trampoline and the jump target
are close enough. A more general solution is to make a two-step jump. The
relative address of the relative jump instruction is redirected to the patch
area of the trampoline. A jump sequence that jumps to the original target
is generated in the patch area as described in section 4.1.1. This solution
has the advantage that even if a relative jump instruction cannot jump very
far by itself, e.g. the tbz and tbnz instructions, the two-step solution enables
a jump with a greater range than the original relative jump instruction. If
the third jump sequence presented in section 4.1.1 is generated, the two-step
jump can target any address in the 64-bit memory space.

4.1.4 Atomic increment and decrement operations

IgProf uses atomic increment and decrement operations as a simple synchro-
nisation mechanism between multiple threads. The profiler uses some global
variables as flags to indicate that profiling or tracing (inspection of IgProf
itself) is enabled or as a counter to limit the number of concurrent threads
outputting statistics about memory mapping when tracing. The atomic op-
erations implemented in IgProf are the increment and decrement operations.
The atomic operations are needed, because normal increment and decrement
operations, e.g. ++counter or --counter in C/C++, are not guaranteed to
be atomic, even if they look like single operations in C code. A normal
increment operation could be compiled into three instructions:

ldr x3, counter ; load counter from memory into register x3

add x3, x3, #1 ; add one to x3

str x3, counter ; store x3 back to counter in memory

Assume that there are two threads, t1 and t2, that are about to increment
the same variable, counter, at the same time and that counter has the initial
value of 1. Both threads have their own copies of register x3, may they be
called x3 1 and x3 2 respectively. Thread t1 loads the value stored in counter,
i.e. 1, into x3 1. Thread t2 also loads the value stored in counter, still 1,
into x3 2. Both threads increment their own copies of the x3 register, which
results in x3 1 = 2 and x3 2 = 2. Finally, both threads store their own copies
of x3 back to counter in memory. Regardless which thread managed to store
to counter last, the value of counter is 2. If the two threads had incremented
the counter sequentially, the value of the counter would have been 3, which
is most likely the intended result.

The problem with the sequence of instructions above is that several
threads have concurrent access to the counter variable. In order to be able to
increment the variable atomically, exclusive access to the variable is needed

CHAPTER 4. IMPLEMENTATION 48

instead. The AArch64 architecture follows the load-linked/store-conditional
(LL/SC) paradigm [72] characteristic of RISC processors to provide exclusive
access. A special load instruction, generally called load-linked, first loads the
variable to be modified into a register from memory. Then the register is
modified, e.g. incremented, and finally a special store instruction, generally
called store-conditional, stores the value of the register back into memory if
the variable in memory has not changed between the load linked and store
conditional instructions. The store conditional also sets a flag in a register
indicating whether the store operation was successful or not. [11, 13]

The following assembly code shows how the atomic increment is imple-
mented on the AArch64 architecture:

loop:

ldaxr x0, [x1] ; load-linked word at x1 into register r0

add x0, x0, #1 ; add one to x0

stlxr w2, x0, [x1] ; store-conditional register x0 to memory at x1

cbnz w2, loop ; jump back to the beginning of the

; loop if store-conditional failed

The address of the variable to be incremented is stored in register x1 be-
fore the code is executed. First the load-linked instruction loads the variable
stored at address x1 in memory into register x0. The add instruction incre-
ments the value of x0 by one. The store-conditional instruction tries to store
the value of x0 into the memory location at x1 and stores the success flag
into register w2. Finally, the jump instruction jumps back to the beginning
of the code block if the store-conditional instruction failed.

4.1.5 Reading the cycle counter register

If the cycle counter register is available to user processes, IgProf reads the
cycle counter before and after an event in order to measure the duration of
the event in clock cycles. The cycle counter increases with every clock cycle
and there are 1/f clock cycles per second, where f is the frequency of the
processor. On the AArch64 architecture the cycle counter is read using the
mrs instruction that copies the value of a system register to a general-purpose
register. The cycle counter register, called PMCCNTR EL0, is one of the
performance monitor registers that, in turn, are a group of system registers
on the AArch64 architecture [13]. By default the cycle counter register is
not accessible to user processes. The control register PMUSERENR EL0,
which is accessible only in kernel mode, controls access to the cycle counter
register. For example a kernel module, which executes in kernel mode, can
set the control register and hence enable reading the cycle counter register.

CHAPTER 4. IMPLEMENTATION 49

4.2 Fast stack tracing on AArch64 and ARM

The calling conventions on UNIX-like systems on the ARM and AArch64
architectures are similar to the calling convention on the x86-64 architec-
ture. Like the x86-64 calling convention, the first few integer arguments of a
function are passed in registers. The first four integer arguments are passed
in the registers r0 –r3 on the ARM architecture [12], whereas the first eight
integer arguments are passed in the registers r0 –r7 on the AArch64 archi-
tecture [14]. However, unlike on the x86 and the x86-64 architectures, the
most recent return address is not stored on the stack, but in a register, the
link register. In order for nested function calls to be allowed, the previous
return address needs to be saved for later restoration. The function prologue
usually saves the link register on the stack together with a frame pointer
register in case a frame pointer register is used at all.

On the AArch64 architecture, the r29 register, alias the fp register, is
regularly used as the frame pointer in non-leaf functions, i.e. in functions
that make function calls. The reference register of a frame descriptor (see
section 3.2.2) can be either the stack pointer or the r29 register on the
AArch64 architecture.

ARM processors can execute code of both the A32 and the T32 instruction
sets. Functions compiled for the A32 instruction set tend to use only the stack
pointer and no frame pointer. Functions compiled for the T32 instruction set,
on the other hand, cannot easily access the stack pointer and instead tend to
use the r7 register, also called the work register, as the frame pointer. Hence
the reference register of a frame descriptor (see section 3.2.1) can be either
the stack pointer register or the r7 register on ARM.

In addition to the fields of a frame descriptor on x86-64, a frame descriptor
in the ARM and AArch64 ports contains a CFA-relative offset to the location
on the stack where the link register is saved in the function prologue. This is
not needed on the x86-64 arhictecture, because the return address is always
stored at a constant offset from the value of the CFA. In non-leaf functions,
i.e. functions that do make function calls, the link register is stored on the
stack. In leaf functions, i.e. functions that do not call any functions, the link
register does not need to be saved on the stack, because the link register is
not overwritten.

Standard frames are handled similarly on the ARM and AArch64 ar-
chitectures as on the x86-64 architecture. The following steps are carried
out to calculate the previous frame based on the current frame and a frame
descriptor:

1. the previous CFA is the value of the current reference register, i.e. the

CHAPTER 4. IMPLEMENTATION 50

stack pointer or the r29 register on AArch64 or the stack pointer or
the r7 register on ARM, ± an offset

2. the previous location of execution is obtained from

(a) the stack at the CFA ± an offset, if the link register is saved on
the stack

(b) the saved value of the link register, if the link register is not saved
on the stack and if the stack frame two positions more recent than
the previous frame is a signal frame

3. the previous frame pointer, i.e. the r7 register on ARM and the r29
register on AArch64, is either unmodified or stored at the CFA ± an
offset on ARM

4. the previous stack pointer is the CFA itself.

Signal frames are pushed on the stack in the same way as on the x86-64
architecture. The signal frame contains a snapshot of the whole register file.
The previous CFA is calculated as the current CFA + the size of the signal
frame. The previous location of execution, the previous stack pointer and
the previous frame pointer are obtained directly from the context structure
on the stack. In addition, the value of the link register is saved separately.
The location of execution of the previous stack frame is the saved value of
the program counter register, whereas the saved value of the link register is
used as the location of execution of the stack frame two positions earlier, if
the corresponding function is a leaf function.

The guessed frame type is not used on the ARM and AArch64 archi-
tectures, but frames can be of unknown type, if they are not recognised as
standard or signal frames. If frames of unknown type are encountered, the
fast stack tracing fails and the standard (and slower) stack trace mechanism,
using unwind information, is used to obtain the stack trace.

Like on the x86-64 architecture, some optimisations were considered for
the variants of the getcontext function used by the fast stack trace feature
on both the ARM and AArch64 architectures. In the AArch64 port of libun-
wind, the C library variant of the getcontext function is used when perform-
ing slow stack tracing. The C library version saves all registers to a context
structure. A more lightweight and faster alternative variant was developed
with fast stack tracing in mind. This variant saves only three registers to the
context structure: the frame pointer register, the stack pointer register and
the program counter.

CHAPTER 4. IMPLEMENTATION 51

In the ARM port of libunwind, the library variant of the getcontext func-
tion is not used, but instead a single instruction is used to store the contents
of the registers to the context structure. This relies on a unique feature
of the ARM instruction set, an instruction that stores any number of the
16 registers to memory. An experimental alternative variant was developed
for fast stack tracing, but measurements show that the experimental variant
did not improve performance significantly over the single-instruction variant.
The experimental variant stored three registers to the context structure: the
r7 register, the stack pointer and the program counter.

4.3 Energy profiling in IgProf

In contrast to the porting efforts being done as part of this thesis, the energy
profiling module introduces some new functionality to IgProf. The new en-
ergy profiling module obtains energy measurements from the RAPL interface
through the PAPI library at a constant interval and attributes the current
energy measurements to the current location of execution.

4.3.1 The RAPL interface

Recent Intel processors (SandyBridge processors and later) implement the
Running Average Power Limit (RAPL) interface [56] that allows energy usage
to be limited and monitored. The interface is implemented as model-specific
registers (MSR) in the processor. The registers are updated approximately
once every millisecond and the energy measurements are reported in units
of 15.3 µJ. The unit of measurements is specified in a separate MSR, but
currently Intel only provides measurements in units of 15.3 µJ. The RAPL
interface provides energy measurements for four energy domains: processor
package, power plane 0, power plane 1 and DRAM.

A processor package describes a processor die that can contain multiple
cores, on-chip devices and other uncore components (components other than
the cores) [56]. The processor package energy domain includes all the energy
that the processor die consumes including all core and uncore components.
A computer can have several processor packages and each processor package
provides its own energy measurements. Energy measurements for processor
packages are available on desktop and server grade processors.

Power plane 0 (PP0) describes the CPU cores. In recent desktop and
server grade processors, there are usually multiple cores in one processor
package. Each processor package provides a single energy measurement that
is the total energy consumption of all cores in the processor package. PP0

CHAPTER 4. IMPLEMENTATION 52

is available on both desktop and server grade processors from Intel. Power
plane 1 (PP1), on the other hand, describes some ’specific device in the un-
core’. The components of a processor package that are not part of the cores
are referred to as the uncore collectively. In practice an on-chip graphics pro-
cessing unit (GPU) is usually a PP1 component on desktop grade processors
[22]. PP1 is available only on desktop grade processors from Intel and not
on server grade processors. Instead, the DRAM plane is available on server
grade processors from Intel. The DRAM plane describes directly attached
DRAM. To summarise, desktop grade processors provide measurements for
the processor package, PP0 and PP1 energy domains, whereas server grade
processors provide energy measurements for the processor package, PP0 and
DRAM energy domains. The processor package domain includes the energy
consumption of both the cores and the uncore components. The energy con-
sumption of the components of the uncore not covered by PP1 are calculated
as energy(uncore) = energy(package) − energy(PP0) − energy(PP1) [22].
[56, 84]

Only the kernel and kernel modules that run at the ring 0 privilege
level, i.e. the highest privilege level in Intel terminology, can access the
RAPL registers [84]. The Linux kernel module msr [2] provides access to
the model-specific registers as files (one file per core) in the file system at
/dev/cpu/*/msr. The first step to access a model-specific register is to per-
form a seek operation using the number of the MSR as the offset. The seek
operation selects which MSR to operate on. The second step is to actually
access the MSR by reading or writing eight bytes, i.e. 64 bits, to the file.

4.3.2 Usage of the PAPI library

IgProf does not read the MSR files directly, but uses the PAPI (Performance
API) library [84] as an interface, through which the MSRs are read. This has
the advantage of decoupling IgProf from the msr kernel module. The PAPI
library is used as a high-level interface to read energy measurements. If the
RAPL interface changes or if PAPI manages to gain access to the RAPL
interface through some other means than the msr kernel module, the source
code of IgProf would not need to be modified, but an update to the PAPI
shared library would suffice. When new energy measurement components
become available through PAPI, little work is needed to make use of these
PAPI components in the energy profiling module of IgProf. Recent processors
of the AMD family 15h provide power measurements in watts through a
model-specific register [9]. There are plans to support also this interface in
future versions of PAPI.

The energy profiling module performs the following five steps to prepare

CHAPTER 4. IMPLEMENTATION 53

PAPI for energy measurements:

1. the PAPI library is initialised

2. the RAPL component of PAPI is located

3. an event set containing RAPL events is created

4. memory is allocated for the energy readings

5. the event set is activated.

In more detail, the first step, initialising the PAPI library, is performed
to ensure that the version of the PAPI shared library available at the time
of execution is compatible with the version of PAPI that was used when the
application, in this case IgProf, was compiled. This step is necessary, because
the library and the application need to share the same view of data structures
passed across the interface between the library and the application.

The second step is locating the RAPL component. It is possible to build
the PAPI library with or without the RAPL component. The default is
to exclude it, but when the parameter --with-components=rapl is passed to
the configuration script, the RAPL component is built into PAPI. PAPI
provides an interface to iterate through all built-in components at runtime.
Components are identified by name and finding the RAPL component is
simply a matter of string matching. In addition to the name, each component
has a flag that indicates whether the component is enabled or disabled. The
RAPL component is disabled if the processor does not support RAPL, e.g.
when IgProf is running on an AMD processor.

The third step is to create an event set. A PAPI event usually corresponds
to a hardware event [51], e.g. an instruction being executed or a cache miss,
but a RAPL event represents a certain amount of energy being used by a
component in one of the four energy domains of RAPL. An event set specifies
a collection of related PAPI events. Each event in an event set corresponds to
a measurement that is read and stored as an entry in an array. IgProf iterates
through all available events in the RAPL component of PAPI and adds the
integer type events that correspond to the four energy domains of RAPL.
PAPI also provides floating point measurements, but IgProf is designed to
collect integer data.

The fourth step is to allocate space for two arrays. One array is used
to store the most recent energy readings, whereas the other array contains
the previous readings. When both the current and the previous readings are
available, it is easy to calculate the difference between them. Finally, as the
fifth step, the event set created in step three is activated.

CHAPTER 4. IMPLEMENTATION 54

4.3.3 The energy profiling module

When the initialisation is completed successfully and IgProf has set up the
signal handler and the interval timer (see section 3.1.6), the energy profiling
module is running. Figure 4.5 shows how the energy profiling module oper-
ates. At a certain interval the current energy consumption and location of
execution are sampled. The difference between the current and the previous
energy readings is attributed to the current location of execution. When
the energy profiling is ready and analysed, the results may show that some
locations in the executable have a higher amount of energy associated with
them than others. These bottlenecks may be worth optimising for energy
consumption.

E

t

amount of
energy

sampling interval
∼5 ms

update interval of
RAPL registers

∼1 ms

Figure 4.5: Principle of operation of the energy profiling module.

The energy profiling module uses four counters (see section 3.1.2) to rep-
resent the four RAPL energy domains: the NRG PKG counter represents the
total energy consumption of all processor packages, the NRG PP0 counter
represents the total energy of all cores, the NRG PP1 counter represents the
total energy of all PP1 components and the NRG DRAM counter represents
the total energy consumption of all DRAM components. Because only three
of the four energy domains usually are available on any processor implement-
ing the RAPL interface, one of the four counters is left unused.

The energy profiling module is based on the performance profiling mod-
ule, because they both have in common that they make observations at a
regular interval. Both modules utilise an interval timer and a signal handler
to implement the sampling. Section 3.1.6 describes more in detail how this
mechanism is used in IgProf. Inside the signal handler the RAPL measure-
ments are queried through the PAPI library. As described above, the energy
profiling module keeps the previous set of measurements in order to be able
calculate the delta values. Each delta value together with the current stack

CHAPTER 4. IMPLEMENTATION 55

trace is added to the counter that corresponds to the energy domain of the
delta value. To summarise the functionality of the energy profiling module,
the module reads the energy consumption at a constant interval, calculates
the difference in energy consumption since the previous reading and adds the
difference to the counters of the energy profiling module.

To profile energy consumption using IgProf, the -np or --energy-profiler
argument is given to IgProf. The obvious choice for the abbreviated variant
of the argument, -ep, was already taken by the empty memory profiler. The
igprof script was extended to recognise and validate these arguments. Section
3.1.5 describes further how the script works and why it is used. The following
command line starts the energy profiling module of IgProf:

igprof -z -np application arguments to the application

The -z argument compresses the output as described in section 3.1.3,
but is not strictly necessary, whereas the -np argument enables the energy
profiler. When the profiling has finished successfully, the result is a file
containing the profiling data. The default name of the output file conforms
to the pattern igprof.pid.gz, where pid is the process id of the application
running. The -o argument is used to name the output file differently (see
section 3.1.3). To analyse and present the results of the profiling, the igprof-
analyse program is used:

igprof-analyse -d -v -g profiling-data-file

Section 3.1.4 describes the -d, -v and -g arguments. The output of igprof-
analyse comprises a flat cumulative profile, a flat self profile and a call graph
profile. The flat cumulative profile tells how much energy was spent in each
function, including the energy spent in child functions, whereas the flat self
profile does not include the energy spent in child functions for each function,
but only the energy spent in the function itself. The call graph shows the re-
lation between functions, i.e. the parent and child functions of each function.
Section 2.2 describes the output formats in greater detail.

Chapter 5

Testing and evaluation

This chapter describes how the port of IgProf, the port of the fast stack trace
feature in the libunwind library and the energy profiling module in IgProf
were tested and evaluated.

5.1 The port of IgProf to AArch64

The port of IgProf to the AArch64 architecture does not bring any new func-
tionality, but enables the profiler to be run on the new architecture. The
parts of IgProf that were ported to the AArch64 architecture mainly affect
the function instrumentation mechanism in IgProf. In order to ensure that
the function instrumentation works correctly, a test program was written.
IgProf instruments 29 functions, but only some functions are instrumented
simultaneously. When the -d argument is given on the command line to Ig-
Prof, the profiler shows which functions are instrumented. The test program
calls 27 of the functions that IgProf instruments. The remaining two func-
tions are cyg profile func enter and cyg profile func enter, both specific
to the GCC compiler. The instrumentation of these two functions are most
easily tested with the function profiling mode of IgProf.

The test program is run with profiling enabled:

igprof -d -z profiling-mode ./insttest

The set of instrumented functions depends on which profiling module
(see section 3.1.1) is enabled. Instrumented functions common to all pro-
filing modules are: exit, exit, kill and pthread create. When performance
profiling is enabled (started with -pp on the command line), the performance
profiling module instruments the following functions: close, fclose, fork, sys-
tem, pthread sigmask and sigaction. It is not even necessary that a sampling
event occurs, the test program calls the instrumented functions directly.

56

CHAPTER 5. TESTING AND EVALUATION 57

The memory profiling module (enabled by the -mp argument) and the
empty memory profiling module (enabled by the -ep argument) instrument
the following memory management functions: calloc, free, malloc, memalign,
posix memalign, realloc and valloc. The file descriptor profiling module (en-
abled by the -fd argument) instruments functions allocating or releasing file
descriptors: close, dup, dup2, open, open64, socket, accept.

IgProf furthermore has a few modes of operation that profile the profiler
itself. These modes, known as tracing modes, are not available through the
igprof script, but are enabled using the igprof-trace script and are usually of
less interest than the main profiling modes (see section 3.1.1). These tracing
modes keep track of memory mapping and unmapping and exception hand-
ling. The tracing modes instrument the memory mapping and unmapping
functions mmap, mmap64 and munmap and the exception handling function

cxa throw.
Runs of the test program shows that the function instrumentation works

correctly and the return value of every function is checked for errors. If an
error occurs, the test program will terminate with an error message. However,
a flaw in the implementation of the test program was discovered. The test
program verifies that the socket functions work correctly by implementing
a server in one thread and a client in another. A race condition sometimes
occurs between the calls to the functions accept and connect.

The port of IgProf to AArch64 was also tested in a different way. A piece
of CMS software [64] was profiled for performance and memory usage on
both AArch64 (a development board) and x86-64 hardware. Table 5.1 shows
the ten functions spending the most execution time on both architectures.
Among the top ten functions on both architectures there are floating point
mathematical functions of the GNU C library (ieee754 log, log finite and

ieee754 atan2), a library initialisation function (init), memory manage-
ment functions (malloc and free) and functions specific to the CMS soft-
ware (fastjet::ClusterSequence:: minheap faster tiled N2 cluster and CoreS-
imTrack::chargeValue). However, the relative order of the functions in the
top ten lists is not the same between the two architectures. The function
MuonAssociatorByHits::getShared, at place 5 on the x86-64 list, is just out-
side the top ten list of the AArch64 architecture, at place 11. The memcpy
function, on the other hand, is at place 8 on the AArch64 list and at place 25
on the x86-64 list. Functions names starting with an underscore are usually
reserved for functions specific to the implementation of libraries and comple-
mentary header files. A specific function can be present on one architecture
and be absent on another architecture, if the functionality is implemented
differently on the two architectures. This seems to be the case with the
std:: adjust heap<...> function. The function at place 8 on the x86-64 list

CHAPTER 5. TESTING AND EVALUATION 58

could not be resolved to a name.

Table 5.1: The top ten functions spending the most execution time in a piece
of CMS software on AArch64 and x86-64.

AArch64 x86-64

Time Function Time Function

1 313.76 init 75.19 ieee754 log

2 125.14 log finite 67.99 init

3 98.13 free 59.71 free

4 87.16 malloc 50.01 malloc

5 70.75 fastjet::ClusterSequence
:: minheap faster tiled N2
cluster

44.78 MuonAssociatorByHits
::getShared

6 49.62 std::basic string<...>
:: M rep

41.40 fastjet::ClusterSequence
:: minheap faster tiled N2
cluster

7 48.73 ieee754 atan2 38.92 CoreSimTrack::chargeValue

8 41.12 memcpy 37.54 @?0xffffffffff600104

9 35.62 CoreSimTrack::chargeValue 35.80 ieee754 atan2

10 32.54 wordcopy fwd aligned 30.10 std:: adjust heap<...>

The same piece of CMS software was also profiled for memory usage on the
AArch64 and the x86-64 architectures. Table 5.2 shows the ten functions us-
ing the most memory on both architectures. The first position on the top ten
list of both architectures is an allocation function, gnu cxx::new allocator
<char>::allocate on AArch64 and std::basic string<char, ...>:: Rep::
S create on x86-64. Even if the function names differ, the functions allo-

cate approximately the same amount of memory. The functions at positions
two to seven are the same on both architectures, following the same relative
order and allocating more or less the same amount of memory. The func-
tion AnalyticalPropagator::propagatedStateWithPath is at position eight on
x86-64 allocating 10.0 GB of memory and at position thirteen on AArch64
allocating only 4.47 GB of memory. Positions eight to nine on the AArch64
list corresponds to positions nine to ten on x86-64 both with regard to the
relative order and amount of memory allocated. The ClusterTPAssociation-
Producer::getSimTrackId<...> function at position ten on the AArch64 list
is just outside the top ten list at position eleven on x86-64. In comparison to
the top ten functions of the performance profile on the AArch64 and x86-64
architectures, the top ten functions of the memory profile show less variation
in the relative order. The amount of memory allocated by the functions is

CHAPTER 5. TESTING AND EVALUATION 59

approximately the same on both architectures.

Table 5.2: The top ten functions using the most memory in a piece of CMS
software on AArch64 and x86-64.

AArch64 x86-64

#
Mem
(GB) Function

Mem
(GB) Function

1 43.6 gnu cxx::new allocator<char>
::allocate

43.6 std::basic string<char, ...>
:: Rep:: S create

2 20.4 TrackingParticle
::TrackingParticle

20.4 TrackingParticle
::TrackingParticle

3 15.4 std::vector<PSimHit, ...>
:: M emplace back aux<...>

15.4 std::vector<PSimHit, ...>
:: M emplace back aux<...>

4 11.9 std:: Vector base
<TrackingParticle, ...>
:: M create storage

11.9 std:: Vector base
<TrackingParticle, ...>
:: M create storage

5 11.4 std::vector<TrackingParticle, ...>
::operator=

11.4 std::vector<TrackingParticle, ...>
::operator=

6 10.7 std::vector<PSimHit, ...>
::operator=

10.7 std::vector<PSimHit, ...>
::operator=

7 10.2 edm::MessageSender
::MessageSender

10.4 edm::MessageSender
::MessageSender

8 9.69 std::vector<PSimHit, ...>
:: M range insert<...>

10.0 AnalyticalPropagator
::propagatedStateWithPath

9 6.66 QuickTrackAssociatorByHits
::prepareEitherHitAssociator
OrClusterToTPMap

9.69 std::vector<PSimHit, ...>
:: M range insert<...>

10 6.31 ClusterTPAssociationProducer
::getSimTrackId<...>

6.51 QuickTrackAssociatorByHits
::prepareEitherHitAssociator
OrClusterToTPMap

During the profiling runs on AArch64, a minor problem was discovered,
which caused the profiler and the application to terminate with a segmenta-
tion fault. Memory was accessed in a memory area, that the application and
the profiler did not have permission to access. The problem turned out to be
related to virtual dynamically linked shared objects (vDSO) [6]. Some func-
tions that are usually part of the kernel are instead available in user space
in a vDSO library. On the AArch64 architecture there are four functions
available in the vDSO library: clock gettime, clock getres, gettimeofday and
rt sigreturn. On the system (Fedora 19 Remix) the profiling was performed,
the application called the gettimeofday function, but there was not enough
unwind information available for the functions in the vDSO library, which

CHAPTER 5. TESTING AND EVALUATION 60

caused the stack tracing in libunwind to access an incorrect memory loca-
tion. A quick solution to the problem was to disable profiling functions in
the vDSO library. This solution was not implemented by the author and is
not part of the port of IgProf to AArch64, but rather as a separate patch to
IgProf.

5.2 Fast stack tracing on AArch64 and ARM

Like the port of IgProf to AArch64, the port of the fast stack trace feature to
the AArch64 and ARM architectures does not bring any new functionality to
the libunwind library, but enables stack tracing to be performed faster than
the standard way of performing stack tracing. Two test programs that come
with the libunwind library were used to verify that the stack trace is correct
and to measure the execution time of stack tracing.

The first test program, Gtest-trace, verifies that the fast stack trace im-
plementation returns the same result as the standard stack trace implemen-
tation. The test program compares the result of fast and standard stack
tracing in three cases. In the first case stack tracing is called from a regular
function. The function that calls stack tracing is by definition not a leaf
function, so the first test case does not cover leaf functions. In the second
case stack tracing is called from inside a signal handler. This case is differ-
ent from the first one, because there is a signal frame on the stack. Signal
frames are handled differently than regular frames in the fast stack tracing
implementation, beacuse the layout of the frames are different. Section 3.2.2
describes stack frames in general and section 4.2 describes the handling of
signal frames on the AArch64 and ARM architectures in particular. The
third case is similar to the second case, but the signal handler uses an al-
ternate stack. An alternate signal stack is set up by the function sigaltstack
[5].

Early runs of the Gtest-trace test program revealed failures in the second
and third cases, which both test that signal frames are handled correctly.
The stack trace showed that the fast stack trace implementation was able
to calculate the previous frame of the signal frame. However, the frame
two positions earlier than the stack frame was not correctly calculated. The
cause of the problem turned out to be a leaf function two positions earlier
than the stack frame. Because leaf functions not necessarily store the link
register on the stack, the stored value of the link register in the signal frame
needs to be saved when fast stack tracing handles signal frames. When this
problem was solved, the Gtest-trace test program confirmed that the fast
stack trace implementation handles signal frames and leaf functions correctly.

CHAPTER 5. TESTING AND EVALUATION 61

Leaf functions can be part of the stack trace only if a signal interrupts the
execution of the leaf function.

The second test program, Gperf-trace, measures the performance of stack
tracing. When the measurement was carried out on the Foundation Model
emulator [15] that emulates the AArch64 architecture, fast stack tracing
executed approximately in 4 % of the execution time of standard (slow)
stack tracing. On real AArch64 hardware the percentage was reported to
be around 3.3 % [74]. Similarly, when the measurement was carried out on
the Qemu emulator [16] that emulates the ARM architecture (among others),
fast stack tracing ran in approximately 5 % of the execution time of standard
stack tracing.

The impact of stack tracing on the execution time of IgProf was exam-
ined on a a development board with an ARMv8 processor, when a piece of
CMS software was profiled with both fast and standard stack tracing enabled
in libunwind. For comparison the same software was also run without any
profiling enabled. The execution time of the software without any profil-
ing enabled is considered the reference time. When memory profiling was
performed with fast stack tracing enabled, the execution time was around
3.3 times (nfast) the reference time on AArch64. The execution time was
approximately 25.3 times (nstandard) the reference time when standard stack
tracing was enabled. The memory profiling with fast stack tracing enabled
ran in

nfast

nstandard

=
3.3

25.3
≈ 13 %

of the execution time of profiling with standard stack tracing enabled. In
other words, the execution time of profiling was reduced by approximately
87 %.

For comparison the same piece of software was also profiled for perfor-
mance. The execution time of performance profiling with fast stack trace
enabled in libunwind was approximately 1.1 times the reference time. The
great difference in impact between performance profiling (1.1) and memory
profiling (3.3) is due to the fact that the performance profiler takes a sample
(including a stack trace) around 200 times a second, whereas the memory
profiler makes an observation at every memory allocation and release. The
CMS software typically allocates and releases memory around 1 000 000 times
a second.

CHAPTER 5. TESTING AND EVALUATION 62

5.3 The energy profiling module

The energy profiling module was evaluated in two ways. First, the total en-
ergy consumption of an application measured by the energy profiling module
was compared to the energy consumption measured by a separate energy
measurement tool. This comparison evaluates how the energy profiling mod-
ule distributes the energy over the energy domains as a whole. Second, energy
profiles of applications were compared to performance profiles. The results
of this comparison may indicate some correlation between energy and time
spent in functions. The measurements in this section were conducted on a
desktop computer equipped with an Intel Core i7 processor.

A small tool was written that measures the energy consumption over
the whole execution of an application. The tool, measure-rapl, uses the
PAPI library to obtain energy measurements from the RAPL interface. The
preexisting likwid toolset [79, 80] provides similar functionality, but only
measures the energy consumption of the processor package and the DRAM
energy domains, lacking measurements of the power plane 0 (CPU cores)
and power plane 1 (GPU) energy domains entirely. The energy domains
of RAPL are described in further detail in section 4.3.1. Furthermore, the
likwid toolset does not account for overflows in the 32-bit RAPL registers, a
shortcoming that was addressed in the measure-rapl tool.

0	

50	

100	

150	

200	

250	

300	

350	

400	

me
as
ur
e-­‐r
ap
l	

me
as
ur
e-­‐r
ap
l	

me
as
ur
e-­‐r
ap
l	

me
as
ur
e-­‐r
ap
l	

IgP
ro
f	

IgP
ro
f	

IgP
ro
f	

IgP
ro
f	

En
er
gy
	
 (J
)	

Energy	
 measurement	
 tool	

nrg_pkg	

nrg_pp0	

nrg_pp1	

Figure 5.1: Energy consumption as measured by the measure-rapl tool and
the energy profiling module of IgProf.

Figure 5.1 shows the total energy consumption as measured by the mea-
sure-rapl tool and the energy profiling module of IgProf. The application

CHAPTER 5. TESTING AND EVALUATION 63

being measured and profiled was a simple test program performing insertion
sorting. The first four sets of measurements show the energy as measured
by the measure-rapl tool. The following four sets of measurements show the
energy as measured by the energy profiling module of IgProf. The columns
in each set of measurements describe the processor package, power plane 0
(CPU cores) and power plane 1 (GPU). The values in each energy domain are
very similar between the different sets of measurements, both between sets of
measurements from the same tool and between the two tools. The same find-
ing was observed when the energy consumption of the stream benchmarking
tool and a piece of CMS software (described below) was measured with both
the energy profiling module and the measure-rapl tool.

The stream benchmarking tool [67] was profiled for energy consumption
and performance using IgProf. The stream benchmarking tool performs four
types of vector operations to generate workload. The Add operation adds
two vectors and stores the result in a third vector (C[i] = A[i] + B[i]), the
Copy operation copies a vector to another (C[i] = A[i]), the Scale operation
scales a vector and stores the result in another (C[i] = kA[i]) and the Triad
operation first scales one vector, then adds another vector and finally stores
the result in a third vector (C[i] = A[i] + kB[i]). The stream tool was
compiled with the -DTUNED flag, in order for the four operations to be
implemented as separate functions.

0	

100	

200	

300	

400	

500	

600	

700	

0	

5	

10	

15	

20	

25	

30	

35	

40	

Add	
 Copy	
 Triad	
 Scale	

En
er
gy
	
 (J
)	

Ex
ec
u.

on
	
 .
m
e	

(s
)	

Func.on	

perf_:cks	

nrg_pkg	

nrg_pp0	

nrg_pp1	

Figure 5.2: The results of performance and energy profiling of the stream
tool.

Figure 5.2 shows the results from performance and energy profiling of
the stream tool. The X-axis describes the four functions Add, Copy, Triad
and Scale. The left scale of the Y-axis and the perf ticks series describe the
execution time spent in each function, whereas the right scale of the Y-axis

CHAPTER 5. TESTING AND EVALUATION 64

and the nrg pkg, nrg pp0 and nrg pp1 series describe the amount of energy
spent in each function. The energy consumption of the processor package
domain and the power plane 0 (describing the CPU) seem to follow the time
spent in the functions, whereas the energy consumption of power plane 1
(describing the GPU) seems to be fairly constant.

In addition to the stream tool, a piece of CMS software was profiled for
performance and energy. The software is multithreaded, it is much more
complex than the simple stream tool and executed for around an hour and
a half. Figure 5.3 shows the results from performance and energy profiling
of the piece of CMS software. Like in the previous plot, the X-axis describes
functions, in this case numbered instead of named for brevity. The top
twenty functions of the performance profile (self time) and top twenty of
each energy domain in the energy profile are shown in the plot. The plot
shows 37 functions, which is less than the total number of entries (80) in the
four top twenty lists (perf ticks, nrg pkg, nrg pp0 and nrg pp1), because the
top twenty lists have many functions in common. Similar to the previous plot,
the left scale of the Y-axis and the perf ticks series describe the execution
time spent in each function, whereas the right scale of the Y-axis and the
nrg pkg, nrg pp0 and nrg pp1 series describe the amount of energy spent in
each function. Unlike the profiling results of the stream tool (see figure 5.2),
the profiling results of the CMS software does not show any clear relation
between the time and energy spent in a function.

CHAPTER 5. TESTING AND EVALUATION 65

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

0	
 5	
 10	
 15	
 20	
 25	
 30	
 35	
 40	

En
er
gy
	
 (J
)	

Ex
ec
u.

on
	
 .
m
e	

(s
)	

Func.on	

perf_0cks	

nrg_pkg	

nrg_pp0	

nrg_pp1	

Figure 5.3: The results of performance and energy profiling of a piece of CMS
software.

Chapter 6

Discussion

In this chapter the port of IgProf to AArch64, the stack trace feature in the
libunwind library and the implementation of the energy profiling module in
IgProf are discussed, especially limitations and future work.

6.1 The port of IgProf to AArch64

The parts of IgProf that were ported to the AArch64 architecture mainly af-
fect the function instrumentation mechanism in IgProf. The implementation
of function instrumentation (see section 4.1) on ARM identifies a small num-
ber of instructions that are common in function prologues. If the compiler
generated a prologue containing instructions outside this set of instructions
recognised by the function instrumentation part of IgProf, the instrumen-
tation would fail. The port of IgProf to AArch64 takes a more general ap-
proach. The function instrumentation part of IgProf identifies and patches
instructions that use addressing relative to the program counter (PC), but
leaves other instructions untouched. The instructions allowed in the func-
tion prologue is not confined to a small set of instructions, but can be any
instructions of the AArch64 instruction set. In other words, the function
instrumentation is more general in the AArch64 implementation of IgProf
than in the ARM implementation.

The implementation of function instrumentation is, however, more limited
on AArch64 than on ARM regarding allocation of memory for a trampoline
(see sections 3.1.7 and 4.1.1). The trampoline needs to be within 128 MB
from the function being instrumented on the AArch64 architecture, because
the target of a single jump instruction is limited to ±128 MB. The allocation
of memory for a trampoline on the x86-64 architecture has a similar limi-
tation. The trampoline needs to be located within 2 GB from the function

66

CHAPTER 6. DISCUSSION 67

being instrumented, even though the memory space is 264 B on the x86-64 ar-
chitecture. This restriction does not apply to the placement of a trampoline
on the ARM or x86 architectures; a trampoline can be placed anywhere in
the 4 GB memory space. In practice, the allocation of memory has succeeded
when CMS software has been profiled on AArch64, even if the software loads
a large number of libraries into the memory space of the process.

The CMS software [64], which is used to analyse data and perform sim-
ulations related to CMS experiments, is in the process of being ported to
AArch64. So far, small parts of the CMS software have been profiled on the
AArch64 architecture (see section 5.1), mainly to try out the port of IgProf
to AArch64. However, when the port of the CMS software to AArch64 be-
comes more mature, IgProf will be used to examine the execution of the CMS
software on both x86-64 and AArch64. A comparsion of the profiling results
might reveal differences in the execution of the CMS software on the two
architectures. IgProf will also be a helpful tool when the CMS software is
being optimised. The profiler helps to find the parts of the software that use
the most resources, i.e. the bottlenecks. Optimisations can then be targeted
at the bottlenecks in the software.

6.2 Stack tracing using libunwind

When the ports of the fast stack trace feature to the AArch64 and ARM
architectures are taken into account, IgProf uses fast stack tracing on three
out of four architectures. On the x86 architecture IgProf implements stack
tracing itself. Stack tracing is easier to do on x86 than on the other sup-
ported architectures, because unwind information is not generally necessary.
On the x86-64, ARM and AArch64 architectures, however, stack tracing is
more complex due to the dependency on unwind information. Hence, it is
reasonable to use a library that performs stack tracing with the help of un-
wind information instead of reimplementing stack tracing in the application.
Because IgProf already is dependent on the libunwind library on three out
of four architectures, it could be feasible to investigate if stack tracing could
be outsourced to libunwind also on the x86 architecture and what the con-
sequences for performance would be. It is not clear if the fast stack trace
feature would make a big difference on x86, because stack tracing on this
architecture is not generally dependent on unwind information. However,
the interest for the x86 architecture may not be as great anymore since the
x86-64 architecture has overtaken the place of x86 in commodity computers.
Furthermore, the implementation of stack tracking on x86 in IgProf works
well, so the only benefit would be to reduce the amount of code in IgProf.

CHAPTER 6. DISCUSSION 68

The fast stack trace feature reduces the execution time of profiling, es-
pecially when profiling events happen frequently. When a piece of CMS
software was profiled for memory usage and fast stack tracing was used in-
stead of standard stack tracing, the execution time of profiling was reduced
by approximately 87 %. The overhead of profiling may not matter when
small applications are profiled, but when big applications, that take hours
or even days to execute, are profiled, the overhead is significant. For big
applications, for example the CMS software, the overhead determines if it is
practically feasible to profile the applications. The execution time of stack
tracing alone was also measured. The execution time of fast stack tracing
was approximately 4 % of the execution time of standard stack tracing.

6.3 The energy profiling module

The total energy consumption measured by the energy profiling module dur-
ing the whole execution of an application seems to correspond well with the
energy consumption measured by a separate energy measurement tool. This
was true for both small single-threaded programs and larger multi-threaded
software. A small single-threaded benchmarking tool was profiled for both
performance and energy consumption. The profiling results seem to show
a correlation between the execution time and the energy spent in a func-
tion. This was not the case with a larger piece of multi-threaded software.
There was not any obvious relation between energy consumption and exe-
cution time. It is very likely that the multiple threads of the application
cause trouble, because the energy profiling module does not take into ac-
count multiple threads or processes. The energy measurements provided by
the RAPL interface through the PAPI library are system-wide. A possible
solution would be to keep track of the number of threads and split the mea-
sured energy evenly between the threads. The greatest flaw in this solution
is that it assumes that all threads are running. If some threads are running
and some are sleeping, energy consumption should not be attributed to the
sleeping threads.

An improved version of the energy profiling module would have a better
strategy for distributing the measured energy over the running threads of the
application being profiled and other processes. Ideally PAPI would provide
energy measurements per thread, but even per process would be better than
the current system-wide measurements. Furthermore, the energy profiler
could be extended to support other sources of energy measurements, e.g.
the Texas Instruments INA231 power monitor chip [26, 78] available on the
ODROID-XU+E board [48] based on ARM.

CHAPTER 6. DISCUSSION 69

Another shortcoming of the energy profiling module is that the energy
consumption of short pieces of code executing faster than the update inter-
val of the RAPL registers, i.e. approximately 1 ms, cannot reliably be mea-
sured using the RAPL interface without synchronisation. A solution to this
problem has been developed at Dresden University of Technology [45, 46].
A framework called HAECER performs more fine-grained measurements by
synchronising the start of execution of the function to be measured to an
update in RAPL registers. After the function has returned, the time before
the next update in RAPL registers is measured. This mechanism, however,
extends the overall execution time and is more appropriate for measuring
the energy consumption of short fragments of code rather than large ap-
plications. The update interval of the RAPL registers is not exactly 1 ms,
but has a variation of ±0.02 ms [46]. This may be critical when measuring
short fragments of code, but when profiling big applications the differences
in update interval should even out.

A drawback relating to the implementation of the energy profiling module
is the added dependency on the PAPI library. The cmake configuration
script that is run as part of the building process of IgProf tries to find a
header file and a library file of PAPI. If the PAPI files cannot be found, the
configuration script determines that PAPI is not available and IgProf is built
without integration with PAPI, but the rest of the functionality of IgProf is
still available as before. To summarise, the build-time dependency on PAPI
is optional in general, but required if the energy profiling module is to be
used. The energy profiling module could quite easily be rewritten to use
the msr kernel module directly if it was desirable to remove the dependency
on the PAPI library. On the other hand, the PAPI library also provides
measurements unrelated to energy consumption, such as the number of cache
misses or number of instructions executed. IgProf could be extended with
further profiling modules that would use other types of PAPI events.

Chapter 7

Conclusions

The goals of the thesis work was to port IgProf to 64-bit ARM, port the fast
stack trace feature of the libunwind library to both 64-bit and 32-bit ARM
and extend the functionality of the profiler with a simple energy profiling
module. The profiler was available on the Intel x86 and x86-64 architectures,
as well as on 32-bit ARM, but support for 64-bit ARM was missing. The
port of IgProf to 64-bit ARM enables developers to evaluate how applications
execute on the new architecture with regard to performance and memory
usage. The major part of the porting effort of IgProf to AArch64 (64-bit
ARM) concerns the function instrumentation mechanism in IgProf. A test
program was written and run to verify that the function instrumentation
was carried out correctly. So far, small parts of the CMS software have
been profiled with the port of IgProf to AArch64. When the port of the
CMS software to AArch64 becomes more mature, IgProf will be used for
examination and optimisation of the CMS software on 64-bit ARM.

IgProf uses the libunwind library to perform stack tracing as part of the
profiling. The fast stack trace feature in the libunwind library was ported
from the x86-64 architecture to both 64-bit and 32-bit ARM. It is necessary
for the stack tracing to execute fast, because the profiler performs stack
tracing at every sampling event or call to memory management functions.
The performance profiler takes a sample (including a stack trace) around 200
times a second, whereas the memory profiler makes an observation at every
memory allocation and release. CMS software typically allocates and releases
memory around 1 000 000 times a second. When a piece of CMS software was
profiled for memory usage and fast stack tracing was used instead of standard
stack tracing, the execution time of profiling was reduced by approximately
87 %. The overhead of profiling may not matter when small applications are
profiled, but for big applications, the overhead determines if it is practically
feasible to profile the applications.

70

CHAPTER 7. CONCLUSIONS 71

In contrast to the port of IgProf to AArch64 and the port of the fast
stack trace feature of the libunwind library to both 32-bit and 64-bit ARM,
the simple energy profiling module extends the functionality of IgProf. The
energy profiling module obtains energy measurements from the RAPL in-
terface present on recent Intel processors at a certain sampling interval and
attributes the accumulated amount of energy since the previous sampling
event to the current location of execution. The profiling results of a simple
single-threaded application seem to show a correlation between the execution
time and the energy spent in a function. However, the implementation of the
energy profiling module is still rather näıve and limited, e.g. it does not take
into account multiple threads or other processes that also consume energy.
An improved version of the energy profiling module would have a better
strategy for distributing the measured energy over the running threads of
the application being profiled and other processes. Furthermore, the energy
profiler could be extended to support other sources of energy measurements.

Bibliography

[1] ld.so(8) - Linux programmer’s manual. Manual page. http://man7.org/
linux/man-pages/man8/ld.so.8.html. Accessed 2014-05-27.

[2] MSR(4) - Linux programmer’s manual. Manual page. http://man7.org/
linux/man-pages/man4/msr.4.html. Accessed 2014-07-24.

[3] profil(3) – Linux programmer’s manual. Manual page. http://man7.

org/linux/man-pages/man3/profil.3.html. Accessed 2014-08-26.

[4] setitimer(2) - Linux man page. Manual page. http://linux.die.net/

man/2/setitimer. Accessed 2014-03-12.

[5] sigaltstack(2) – Linux programmer’s manual. Manual page. http://

man7.org/linux/man-pages/man2/sigaltstack.2.html. Accessed 2014-
08-22.

[6] vDSO(7) - Linux programmer’s manual. Manual page. http://man7.

org/linux/man-pages/man7/vdso.7.html. Accessed 2014-08-21.

[7] Abdurachmanov, D., et al. Explorations of the viability of ARM
and Xeon Phi for physics processing.

[8] Adhianto, L., et al. HPCToolkit: Tools for performance analysis of
optimized parallel programs. Concurrency and Computation: Practice
and Experience, 22 (2010), 685–701. DOI 10.1002/cpe.1553.

[9] AMD. BIOS and Kernel Developer’s Guide (BKDG) for AMD
Family 15h Models 00h-0Fh Processors, 2013. Order number 42301
Rev 3.14. http://support.amd.com/TechDocs/42301_15h_Mod_00h-0Fh_

BKDG.pdf. Accessed 2014-07-25.

[10] Apple. Instruments user guide. https://developer.apple.

com/library/mac/documentation/developertools/conceptual/

instrumentsuserguide/InstrumentsUserGuide.pdf.

72

http://man7.org/linux/man-pages/man8/ld.so.8.html
http://man7.org/linux/man-pages/man8/ld.so.8.html
http://man7.org/linux/man-pages/man4/msr.4.html
http://man7.org/linux/man-pages/man4/msr.4.html
http://man7.org/linux/man-pages/man3/profil.3.html
http://man7.org/linux/man-pages/man3/profil.3.html
http://linux.die.net/man/2/setitimer
http://linux.die.net/man/2/setitimer
http://man7.org/linux/man-pages/man2/sigaltstack.2.html
http://man7.org/linux/man-pages/man2/sigaltstack.2.html
http://man7.org/linux/man-pages/man7/vdso.7.html
http://man7.org/linux/man-pages/man7/vdso.7.html
http://support.amd.com/TechDocs/42301_15h_Mod_00h-0Fh_BKDG.pdf
http://support.amd.com/TechDocs/42301_15h_Mod_00h-0Fh_BKDG.pdf
https://developer.apple.com/library/mac/documentation/developertools/conceptual/instrumentsuserguide/InstrumentsUserGuide.pdf
https://developer.apple.com/library/mac/documentation/developertools/conceptual/instrumentsuserguide/InstrumentsUserGuide.pdf
https://developer.apple.com/library/mac/documentation/developertools/conceptual/instrumentsuserguide/InstrumentsUserGuide.pdf

BIBLIOGRAPHY 73

[11] ARM. ARMv8 instruction set overview, 2011.

[12] ARM. Procedure call standard for the ARM architecture,
2012. http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042e/

IHI0042E_aapcs.pdf. Accessed 2014-08-04.

[13] ARM. ARM architecture reference manual: ARMv8, for ARMv8-A
architecture profile, 2013.

[14] ARM. Procedure call standard for the ARM 64-bit architecture
(AArch64), 2013. http://infocenter.arm.com/help/topic/com.arm.

doc.ihi0055b/IHI0055B_aapcs64.pdf. Accessed 2014-05-07.

[15] ARM. ARMv8-A Foundation Model user guide, 2014. Revi-
sion D. http://infocenter.arm.com/help/index.jsp?topic=/com.arm.

doc.dui0677b/index.html. Accessed 2014-08-22.

[16] Bellard, F. Manual – QEMU. Web site. http://wiki.qemu.org/

Manual. Accessed 2014-08-29.

[17] Blem, E., Menon, J., and Sankaralingam, K. Power struggles:
Revisiting the RISC vs. CISC debate on contemporary ARM and x86
architectures. In The 19th IEEE International Symposium on High Per-
formance Computer Architecture (HPCA-2013) (2013), pp. 1–12. DOI
10.1109/HPCA.2013.6522302.

[18] Bruening, D. L. Efficient, Transparent and Comprehensive Runtime
Code Manipulation. PhD thesis, Massachusetts Institute of Technology,
2004. http://www.burningcutlery.com/derek/docs/phd.pdf.

[19] Bruening, D. L., et al. DynamoRIO API. Web page. http://

dynamorio.org/docs/. Accessed 2014-08-29.

[20] CERN. About CERN. Web page. http://home.web.cern.ch/about.
Accessed 2014-09-30.

[21] Cohen, W. E. Tuning programs with OProfile. Wide Open Magazine,
Premiere issue (2004), 53–62.

[22] Demmel, J., and Gearhart, A. Instrumenting linear algebra en-
ergy consumption via on-chip energy counters. Tech. Rep. UCB/EECS-
2012-168, University of California at Berkeley, 2012. http://www.eecs.

berkeley.edu/Pubs/TechRpts/2012/EECS-2012-168.pdf. Accessed 2014-
06-23.

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042e/IHI0042E_aapcs.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042e/IHI0042E_aapcs.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0055b/IHI0055B_aapcs64.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0055b/IHI0055B_aapcs64.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0677b/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0677b/index.html
http://wiki.qemu.org/Manual
http://wiki.qemu.org/Manual
http://www.burningcutlery.com/derek/docs/phd.pdf
http://dynamorio.org/docs/
http://dynamorio.org/docs/
http://home.web.cern.ch/about
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-168.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-168.pdf

BIBLIOGRAPHY 74

[23] Edge, J. Lots of new perf features, 2014. Web site. https://lwn.net/
Articles/593690/. Accessed 2014-09-02.

[24] Elmer, P., Eulisse, G., and Lupton, R. Future development of
the IgProf application performance profiler and analysis tool, 2013.

[25] Eranian, S. Perfmon2: a flexible performance monitoring interface for
Linux. In Proceedings of the Linux Symposium (2006), vol. 1, pp. 269–
288.

[26] Eulisse, G., et al. Techniques and tools for measuring en-
ergy efficiency of scientific software applications, 2014. Slide
set. https://indico.cern.ch/event/258092/session/7/contribution/

91/material/slides/0.pdf. Accessed 2014-09-09.

[27] Eulisse, G., and Tuura, L. IgProf, the Ignominous Profiler. Web
page. http://igprof.org/. Accessed 2014-03-27.

[28] Eulisse, G., and Tuura, L. A. IgProf profiling tool,
2004. http://indico.cern.ch/event/0/session/6/contribution/63/

material/paper/0.pdf. Accessed 2014-03-04.

[29] Fog, A. Calling conventions for different C++ compilers and operating
systems, 2014. http://agner.org/optimize/calling_conventions.pdf.
Accessed 2014-09-30.

[30] Fonseca, J. Gprof2dot. http://code.google.com/p/jrfonseca/wiki/

Gprof2Dot. Accessed 2014-03-27.

[31] Fowler, M. Yet another optimization article. IEEE Software,
May/June (2002), 20–21. ISSN 0740-7459.

[32] Free Software Foundation. Debugging with GDB. Manual. https:
//sourceware.org/gdb/current/onlinedocs/gdb/. Accessed 2014-08-01.

[33] Free Software Foundation. GNU Binutils. Web page. http://

www.gnu.org/software/binutils/. Accessed 2014-09-30.

[34] Free Software Foundation. Interoperation - using the GNU com-
piler collection (GCC). Web page. https://gcc.gnu.org/onlinedocs/

gcc-4.9.1/gcc/Interoperation.html. Accessed 2014-07-31.

[35] Free Software Foundation. Nm(1) - GNU development tools.
Manual page. http://man7.org/linux/man-pages/man1/nm.1.html. Ac-
cessed 2014-07-31.

https://lwn.net/Articles/593690/
https://lwn.net/Articles/593690/
https://indico.cern.ch/event/258092/session/7/contribution/91/material/slides/0.pdf
https://indico.cern.ch/event/258092/session/7/contribution/91/material/slides/0.pdf
http://igprof.org/
http://indico.cern.ch/event/0/session/6/contribution/63/material/paper/0.pdf
http://indico.cern.ch/event/0/session/6/contribution/63/material/paper/0.pdf
http://agner.org/optimize/calling_conventions.pdf
http://code.google.com/p/jrfonseca/wiki/Gprof2Dot
http://code.google.com/p/jrfonseca/wiki/Gprof2Dot
https://sourceware.org/gdb/current/onlinedocs/gdb/
https://sourceware.org/gdb/current/onlinedocs/gdb/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
https://gcc.gnu.org/onlinedocs/gcc-4.9.1/gcc/Interoperation.html
https://gcc.gnu.org/onlinedocs/gcc-4.9.1/gcc/Interoperation.html
http://man7.org/linux/man-pages/man1/nm.1.html

BIBLIOGRAPHY 75

[36] Free Software Foundation. Objdump(1) - GNU development
tools. Manual page. http://man7.org/linux/man-pages/man1/objdump.
1.html. Accessed 2014-08-01.

[37] Free Standards Group. DWARF debugging information format,
version 3, 2005. http://www.dwarfstd.org/doc/Dwarf3.pdf. Accessed
2014-08-05.

[38] GNU project. gcov – a test coverage program. https://gcc.gnu.org/
onlinedocs/gcc/Gcov.html. Accessed 2014-09-10.

[39] GNU project. GNU gprof. https://sourceware.org/binutils/docs/
gprof/index.html. Accessed 2014-03-26.

[40] Goel, B., McKee, S. A., and Själander, M. Techniques to Mea-
sure, Model, and Manage Power, vol. 87 (Green and Sustaiable Com-
puting: Part I) of Advances in Computers. Elsevier, 2012, ch. 2. ISBN
978-0-12-396528-8.

[41] Google. Google performance tools. http://code.google.com/p/

gperftools/wiki/GooglePerformanceTools. Accessed 2014-03-26.

[42] Google. Gperftools. http://gperftools.googlecode.com/svn/trunk/

doc/index.html. Accessed 2014-03-26.

[43] Gregory, J. Game Engine Architecture, second ed. CRC Press, Boca
Raton, FL, 2015 [sic]. ISBN 978-1-4665-6001-7.

[44] Hager, G., and Wellein, G. Introduction to high performance com-
puting for scientists and engineers. CRC Press, 2011. ISBN 978-1-4398-
1192-4.

[45] Hähnel, M. Energy/utility for L4Re. Master’s thesis, Dresden Uni-
versity of Technology, 2012.

[46] Hähnel, M., Döbel, B., Völp, M., and Härtig, H. Measur-
ing energy consumption for short code paths using RAPL. ACM SIG-
METRICS Performance Evaluation Review 40, 3 (2012), 13–17. DOI:
10.1145/2425248.2425252.

[47] Hamilton, J. Cooperative expendable micro-slice servers (CEMS):
Low cost, low power servers for internet-scale services. In CIDR 2009 -
4th Biennal Conference on Innovative Data Systems Research (2009).

http://man7.org/linux/man-pages/man1/objdump.1.html
http://man7.org/linux/man-pages/man1/objdump.1.html
http://www.dwarfstd.org/doc/Dwarf3.pdf
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://sourceware.org/binutils/docs/gprof/index.html
https://sourceware.org/binutils/docs/gprof/index.html
http://code.google.com/p/gperftools/wiki/GooglePerformanceTools
http://code.google.com/p/gperftools/wiki/GooglePerformanceTools
http://gperftools.googlecode.com/svn/trunk/doc/index.html
http://gperftools.googlecode.com/svn/trunk/doc/index.html

BIBLIOGRAPHY 76

[48] Hardkernel. ODROID-XU+E. Web page. http://www.hardkernel.
com/main/products/prdt_info.php?g_code=G137463363079&tab_idx=2.
Accessed 2014-09-09.

[49] Hubička, J. Porting GCC to the AMD64 architecture. In Proceedings
of the GCC Developers Summit (2003), pp. 79–106.

[50] Innovative computing laboratory, University of Tennessee.
PAPI - overview. http://icl.cs.utk.edu/papi/overview/index.html.
Accessed 2014-06-12.

[51] Innovative computing laboratory, University of Tennessee.
PAPI - user guide. http://icl.cs.utk.edu/projects/papi/wiki/User_

Guide. Accessed 2014-06-12.

[52] Intel. Intel VTune Amplifier XE 2013. http://software.intel.

com/en-us/sites/default/files/Intel-VTune-Amplifier-XE-2013-PB-

082113.pdf Accessed 2014-06-12.

[53] Intel. Pin - a dynamic binary instrumentation tool. http:

//software.intel.com/en-us/articles/pin-a-dynamic-binary-

instrumentation-tool Accessed 2014-06-12.

[54] Intel. Pin 2.13 user guide. http://software.intel.com/sites/

landingpage/pintool/docs/62732/Pin/html/ Accessed 2014-06-12.

[55] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual
Volume 1: Basic Architecture, 2014. Order number 253665-050US. http:
//www.intel.com/content/dam/www/public/us/en/documents/manuals/

64-ia-32-architectures-software-developer-vol-1-manual.pdf.
Accessed 2014-06-23.

[56] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual
Volume 3 (3A, 3B & 3C): System Programming Guide, 2014. Or-
der number 325384-050US. http://www.intel.com/content/dam/www/

public/us/en/documents/manuals/64-ia-32-architectures-software-

developer-system-programming-manual-325384.pdf. Accessed 2014-06-
23.

[57] Irvine, K. R. Assembly language for x86 processors, 6th ed. Pear-
son/Prentice Hall, Upper Saddle River, 2011. ISBN 978-0-13-602212-1.

[58] Janjusic, T., and Kavi, K. Hardware and Application Profiling
Tools, vol. 92 of Advances in Computers. Elsevier, 2014, ch. 3. ISBN
978-0-12-420232-0.

http://www.hardkernel.com/main/products/prdt_info.php?g_code=G137463363079&tab_idx=2
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G137463363079&tab_idx=2
http://icl.cs.utk.edu/papi/overview/index.html
http://icl.cs.utk.edu/projects/papi/wiki/User_Guide
http://icl.cs.utk.edu/projects/papi/wiki/User_Guide
http://software.intel.com/en-us/sites/default/files/Intel-VTune-Amplifier-XE-2013-PB-082113.pdf
http://software.intel.com/en-us/sites/default/files/Intel-VTune-Amplifier-XE-2013-PB-082113.pdf
http://software.intel.com/en-us/sites/default/files/Intel-VTune-Amplifier-XE-2013-PB-082113.pdf
http://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
http://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
http://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
http://software.intel.com/sites/landingpage/pintool/docs/62732/Pin/html/
http://software.intel.com/sites/landingpage/pintool/docs/62732/Pin/html/
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-1-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-1-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-1-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-system-programming-manual-325384.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-system-programming-manual-325384.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-system-programming-manual-325384.pdf

BIBLIOGRAPHY 77

[59] Jarp, S., Jurga, R., and Nowak, A. Perfmon2: A leap forward
in performance monitoring. Journal of Physics: Conference Series 119
(2008).

[60] Kartik, S. V., Couturier, B., Clemencic, M., and Neufeld,
N. Measurements of the LHCb software stack on the ARM architec-
ture. Journal of Physics: Conference Series 513 (2014). DOI 088/1742-
6596/513/5/052014.

[61] Kefallonitis, F. Name mangling demystified, 2007. http://www.

int0x80.gr/papers/name_mangling.pdf. Accessed 2014-07-31.

[62] Kuperberg, M. Quantifying and Predicting the Influence of Execution
Platform on Software Component Performance, vol. 5 of The Karlsruhe
Series on Software Design and Quality. KIT Scientific Publishing, 2011.
ISBN 978-3-86644-741-7.

[63] Levon, J. OProfile manual, 2004. http://oprofile.sourceforge.net/
doc/index.html. Accessed 2014-03-26.

[64] Malik, S. The CMSSW documentation suite: The CMS offline work-
book. Web site. https://twiki.cern.ch/twiki/bin/view/CMSPublic/

WorkBook. Accessed 2014-09-30.

[65] Mars, J., Tang, L., and Hundt, R. Whare-map: Heterogeneity
in ”homogeneous” warehouse-scale computers. In ISCA ’13 Proceedings
of the 40th Annual International Symposium on Computer Architecture
(2013), pp. 619–630.

[66] Matz, M., Hubička, J., Jaeger, A., and Mitchell, M. System V
application binary interface AMD64 architecture processor supplement,
2012. Version 0.99.6. http://www.x86-64.org/documentation/abi.pdf.
Accessed 2014-08-04.

[67] McCalpin, J. D. STREAM: Sustainable memory bandwidth in
high performance computers. Web page. http://www.cs.virginia.edu/
stream/. Accessed 2014-09-04.

[68] Mosberger-Tang, D. unw step – advance to next stack frame. Man-
ual page. http://www.nongnu.org/libunwind/man/unw_step(3).html.
Accessed 2014-08-05.

[69] Nethercote, N. Dynamic Binary Analysis and Instrumentation.
PhD thesis, University of Cambridge, 2004. http://valgrind.org/docs/
phd2004.pdf.

http://www.int0x80.gr/papers/name_mangling.pdf
http://www.int0x80.gr/papers/name_mangling.pdf
http://oprofile.sourceforge.net/doc/index.html
http://oprofile.sourceforge.net/doc/index.html
https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBook
https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBook
http://www.x86-64.org/documentation/abi.pdf
http://www.cs.virginia.edu/stream/
http://www.cs.virginia.edu/stream/
http://www.nongnu.org/libunwind/man/unw_step(3).html
http://valgrind.org/docs/phd2004.pdf
http://valgrind.org/docs/phd2004.pdf

BIBLIOGRAPHY 78

[70] Novell. Perfmon2–hardware-based performance monitoring, 2012.
Web page. http://doc.opensuse.org/products/draft/SLES/SLES-

tuning_sd_draft/cha.tuning.perfmon2.html. Accessed 2014-09-01.

[71] Oakley, J., and Bratus, S. Exploiting the hard-working DWARF:
Trojans with no native executable code. Tech. Rep. TR-2011-680,
Computer Science Dept. Dartmouth College, Hanover, New Hamp-
shire, 2011. http://ph-neutral.darklab.org/talks/tr2011-680.pdf.
Accessed 2014-08-05.

[72] Patterson, D. A., and Hennessy, J. L. Computer organization
and design, fifth ed. Morgan Kaufmann, 2014. ISBN 978-0-12-407726-3.

[73] Pettersson, M. Linux performance counters driver. Web page. http:
//sourceforge.net/projects/perfctr/. Accessed 2014-09-02.

[74] Roux, Y. Re: [libunwind-devel] fast stack trace for AArch64 and
ARM. Message on mailing list. http://lists.nongnu.org/archive/

html/libunwind-devel/2014-08/msg00020.html. Accessed 2014-08-22.

[75] Seward, J., et al. Valgrind documentation. http://valgrind.org/

docs/manual/index.html. Accessed 2014-03-26.

[76] Tanenbaum, A. S., and Woodhull, A. S. Operating systems: de-
sign and implementation, third ed. Pearson/Prentice Hall, Upper Saddle
River, NJ, 2009. ISBN 978-0-13-505376-8.

[77] Taylor, I. L. .eh frame, 2011. Web page. http://www.airs.com/blog/
archives/460. Accessed 2014-08-05.

[78] Texas Instruments. Ina231. Web page. http://www.ti.com/product/
INA231/description. Accessed 2014-09-09.

[79] Treibig, J. likwid – lightweight performance tools. Web site. https:
//code.google.com/p/likwid/. Accessed 2014-09-05.

[80] Treibig, J., Hager, G., and Wellein, G. Likwid: A
lightweight performance-oriented tool suite for x86 multicore environ-
ments. In Proceedings of PSTI2010, the First International Work-
shop on Parallel Software Tools and Tool Infrastructures (2010). DOI
10.1109/ICPPW.2010.38.

http://doc.opensuse.org/products/draft/SLES/SLES-tuning_sd_draft/cha.tuning.perfmon2.html
http://doc.opensuse.org/products/draft/SLES/SLES-tuning_sd_draft/cha.tuning.perfmon2.html
http://ph-neutral.darklab.org/talks/tr2011-680.pdf
http://sourceforge.net/projects/perfctr/
http://sourceforge.net/projects/perfctr/
http://lists.nongnu.org/archive/html/libunwind-devel/2014-08/msg00020.html
http://lists.nongnu.org/archive/html/libunwind-devel/2014-08/msg00020.html
http://valgrind.org/docs/manual/index.html
http://valgrind.org/docs/manual/index.html
http://www.airs.com/blog/archives/460
http://www.airs.com/blog/archives/460
http://www.ti.com/product/INA231/description
http://www.ti.com/product/INA231/description
https://code.google.com/p/likwid/
https://code.google.com/p/likwid/

BIBLIOGRAPHY 79

[81] Tuura, L., Innocente, V., and Eulisse, G. Analysing CMS
software performance using IgProf, OProfile and callgrind. Jour-
nal of Physics: Conference Series 119 (2008). DOI 10.1088/1742-
6596/119/4/042030.

[82] University, R. HPC Toolkit. http://hpctoolkit.org/. Accessed
2014-08-26.

[83] Weaver, V. The unofficial Linux perf events web-page. Web
page. http://web.eece.maine.edu/~vweaver/projects/perf_events/.
Accessed 2014-09-02.

[84] Weaver, V. M., et al. Measuring energy and power with PAPI. Pro-
ceedings of the International Conference on Parallel Processing Work-
shops (2012), 262–268. DOI: 10.1109/ICPPW.2012.39.

[85] Weaver, V. M., et al. PAPI 5: Measuring power, energy, and
the cloud. IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS) (2013), 124–125. DOI: 10.1109/IS-
PASS.2013.6557155.

[86] Weidendorfer, J. KCachegrind. http://kcachegrind.sourceforge.

net/html/Home.html. Accessed 2014-03-26.

[87] Wielaard, M. J. Stack unwinding, 2007. Web page. https:

//gnu.wildebeest.org/blog/mjw/2007/08/23/stack-unwinding/. Ac-
cessed 2014-08-05.

http://hpctoolkit.org/
http://web.eece.maine.edu/~vweaver/projects/perf_events/
http://kcachegrind.sourceforge.net/html/Home.html
http://kcachegrind.sourceforge.net/html/Home.html
https://gnu.wildebeest.org/blog/mjw/2007/08/23/stack-unwinding/
https://gnu.wildebeest.org/blog/mjw/2007/08/23/stack-unwinding/

	Cover page
	Abbreviations and acronyms
	Contents
	1 Introduction
	1.1 The IgProf profiler
	1.2 Problem statement
	1.3 Goals and scope
	1.4 Terminology
	1.5 Structure of the thesis

	2 Background
	2.1 Common principles of operation
	2.2 Common output formats
	2.3 A brief presentation and comparison of some profiling software

	3 Environment
	3.1 IgProf
	3.1.1 Functionality
	3.1.2 Counters
	3.1.3 Using IgProf
	3.1.4 Analysing and presenting profiling data
	3.1.5 Loading IgProf
	3.1.6 Statistical sampling and interval timers
	3.1.7 Function instrumentation
	3.1.8 Stack tracing in IgProf

	3.2 Stack tracing in libunwind
	3.2.1 Standard stack tracing
	3.2.2 Fast stack tracing on x86-64

	4 Implementation
	4.1 The port of IgProf to AArch64
	4.1.1 Generating jumps
	4.1.2 Identifying PC-relative instructions
	4.1.3 Patching PC-relative instructions
	4.1.4 Atomic increment and decrement operations
	4.1.5 Reading the cycle counter register

	4.2 Fast stack tracing on AArch64 and ARM
	4.3 Energy profiling in IgProf
	4.3.1 The RAPL interface
	4.3.2 Usage of the PAPI library
	4.3.3 The energy profiling module

	5 Testing and evaluation
	5.1 The port of IgProf to AArch64
	5.2 Fast stack tracing on AArch64 and ARM
	5.3 The energy profiling module

	6 Discussion
	6.1 The port of IgProf to AArch64
	6.2 Stack tracing using libunwind
	6.3 The energy profiling module

	7 Conclusions

